

DISCRETE

 STRUCTURES(Direct Proof, Proof by contrapositive)

Lecture 06

Arfan Shahzad

Definitions

- A theorem is a statement that can be shown to be true. In mathematical writing, the term theorem is usually reserved for a statement that is considered at least somewhat important.
- Less important theorems sometimes are called propositions. (Theorems can also be referred to as facts or results.) A theorem may be the universal quantification of a conditional statement with one or more premises and a conclusion.
- However, it may be some other type of logical statement, as the examples later in this chapter will show. We demonstrate that a theorem is true with a proof.

ArfanShahzadTech

Methods of Proving Theorems wisDomitech

- Direct Proof
- Proof by Contraposition (Contrapositive)

0345-5922495
ArfanShahzadTech

Methods of Proving Theorems cont...wISDOMTECH Direct Proof

- The simplest (from a logic perspective) style of proof is a direct proof.
- Often all that is required to prove something is a systematic explanation of what everything means.
- Direct proofs are especially useful when proving implications.
- The general format to prove $p \rightarrow q$ is this:
- Assume p. Explain, explain, ..., explain. Therefore q.

Methods of Proving Theorems cont...wISDOMTECH Direct Proof

- Often we want to prove universal statements, perhaps of the form $\forall x(p(x) \rightarrow q(x))$.
- Again, we will want to assume $p(x)$ is true and deduce $q(x)$.
- But what about the x ? We want this to work for all x .
- We accomplish this by fixing x to be an arbitrary element (of the sort we are interested in).

Methods of Proving Theorems cont...wISDOMTECH Direct Proof (Example)

- Prove: For all integers n, if n is even, then n^{2} is even.
- The format of the proof with be this: Let n be an arbitrary integer. Assume that n is even. Therefore n^{2} is even.
- To fill in the details, we will basically just explain what it means for n to be even, and then see what that means for n^{2}. Here is a complete proof.

ArfanShahzadTech

Methods of Proving Theorems cont...WISDOMTECH Direct Proof (Example)

- The integer \mathbf{n} is even if there exists an integer \mathbf{k} such that $\mathbf{n}=\mathbf{2 k}$, and \mathbf{n} is odd if there exists an integer \mathbf{k} such that $\mathbf{n}=\mathbf{2 k + 1}$. (every integer is either even or odd, and no integer is both even and odd.)
- Two integers have the same parity when both are even or both are odd; they have opposite parity when one is even and the other is odd.

Methods of Proving Theorems cont...wISDOMTECH Direct Proof (Example)

- Proof Let n be an arbitrary integer.
- Suppose n is even.
- Then $\mathrm{n}=2 \mathrm{k}$ for some integer k .
- Now $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$. Since $2 k^{2}$ is an integer, n^{2} is even.
- Hence proved (For all integers n, if n is even, then n^{2} is even.)

ArfanShahzadTech

Methods of Proving Theorems cont...wISDOMTECH Direct Proof (Example 2)

Give a direct proof that if \mathbf{m} and \mathbf{n} are both perfect squares, then $\mathbf{n m}$ is also a perfect square.

- (An integer \mathbf{a} is a perfect square if there is an integer \mathbf{b} such that $a=b^{2}$.)

Methods of Proving Theorems cont... WISDOMTECH Direct Proof (Example 2)

- Solution: To produce a direct proof of this theorem, we assume that the hypothesis of this conditional statement is true, i.e. \mathbf{m} and \mathbf{n} are both perfect squares.
- By the definition of a perfect square, it follows that there are integers \mathbf{s} and \mathbf{t} such that $\mathbf{m}=\mathbf{s}^{\mathbf{2}}$ and $\mathbf{n}=\mathbf{t}^{\mathbf{2}}$.

Methods of Proving Theorems cont...wISDOMTECH Direct Proof (Example 2)

- The goal of the proof is to show that mn must also be a perfect square when \mathbf{m} and \mathbf{n} are; looking ahead we see how we can show this by substituting $\mathbf{s}^{\mathbf{2}}$ for \boldsymbol{m} and $\mathbf{t}^{\mathbf{2}}$ for \mathbf{n} into $\mathbf{m n}$.
- This tells us that $\mathbf{m n}=\mathbf{s}^{2} \mathbf{t}^{2}$.
- Hence, $\mathbf{m n}=\mathbf{s}^{\mathbf{2} \mathbf{t}}{ }^{\mathbf{2}}=(\mathbf{s s})(\mathbf{t t})=(\mathbf{s t})(\mathbf{s t})=(\mathbf{s t})^{2}$, using commutativity and associativity of multiplication.

ArfanShahzadTech

Methods of Proving Theorems cont...wISDOMTECH Direct Proof (Example 2)

- By the definition of perfect square, it follows that $\mathbf{m n}$ is also a perfect square, because it is the square of $s t$, which is an integer.
- We have proved that if m and n are both perfect squares, then mn is also a perfect square.

Methods of Proving Theorems cont...wISDOMTECH Proof by Contrapositive

- Recall that an implication $p \rightarrow q$ is logically equivalent to its contrapositive $\neg q \rightarrow \neg p$.
- There are plenty of examples of statements which are hard to prove directly, but whose contrapositive can easily be proved directly.
- This is all that proof by contrapositive does.
- It gives a direct proof of the contrapositive of the implication.

Methods of Proving Theorems cont...wISDOMTECH Proof by Contrapositive

- This is enough because the contrapositive is logically equivalent to the original implication.
- The skeleton of the proof of $p \rightarrow q$ by contrapositive will always look roughly like this: Assume $\neg q$. Explain, explain, ... explain. Therefore $\neg \mathrm{p}$.
- As before, if there are variables and quantifiers, we set them to be arbitrary elements of our domain. Here are a couple examples:

ArfanShahzadTech

Methods of Proving Theorems cont.... .ISDOMтесн Proof by Contrapositive (Example)

- Prove the statement "for all integers n, if n^{2} is even, then n is even" true?
- Solution: This is the converse of the statement we proved above using a direct proof.
- A direct proof of this statement would require fixing an arbitrary n and assuming that n^{2} is even. But it is not at all clear how this would allow us to conclude anything about n. Just because $n^{2}=2 k$ does not in itself suggest how we could write n as a multiple of 2 .

ArfanShahzadTech

Methods of Proving Theorems cont.... .ISDOMтесн Proof by Contrapositive (Example)

- Try something else: write the contrapositive of the statement. We get, for all integers n, if n is odd then n^{2} is odd. Our proof will look something like this:
- Let n be an arbitrary integer. Suppose that n is not even. Therefore n^{2} is not even.

ArfanShahzadTech

Methods of Proving Theorems cont.... ,ISDOMTECH Proof by Contrapositive (Example)

- Now we fill in the details:
- Proof: We will prove the contrapositive. Let n be an arbitrary integer.

Suppose that n is not even, and thus odd. Then $\mathrm{n}=2 \mathrm{k}+1$ for some integer k .

- Now $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
- Since $2 k^{2}+2 k$ is an integer, we see that n^{2} is odd and therefore not even.

