
Abstract
Data Types

Arfan Shahzad
{ arfanskp@gmail.com }

Data Structures and Algorithms

mailto:arfanskp@gmail.com


Data Structures and Algorithms



Data Structures and Algorithms



Data Structures and Algorithms



Abstraction

• The concept of abstraction is to extract a complicated system down

to its most fundamental parts and describe these parts in a simple

and precise way.

• Applying the abstraction paradigm to the data structures gives rise to

Abstract Data Types (ADTs).



Abstract Data Types

• An ADT is a mathematical model of a data structure that specifies

the type of data stored, the operations supported on them, and the

types of parameters of the operations.

• An ADT specifies what each operation does, but not how it does it.



Abstract Data Types cont…
Stack ADT

• It is named stack as it behaves like a real-world stack, for example, a pile of

plates, etc.

• Stack is a linear data structure which follows a particular order in which the

operations are performed. The order may be LIFO (Last In First Out) or

FILO (First In Last Out).

• Formally, a stack is an abstract data type (ADT) that supports the following

two methods:



Abstract Data Types cont…
Stack ADT

• push(e): Insert element e, to be the top of the stack.

• pop(): Remove from the stack and return the top element on the

stack; an error occurs if the stack is empty.

• Additionally, let us also define the following methods:



Abstract Data Types cont…
Stack ADT

• size(): Return the number of elements in the stack.

• isEmpty(): Return a Boolean indicating if the stack is empty.

• top(): Return the top element in the stack, without removing it; an

error occurs if the stack is empty.



Abstract Data Types cont…
Queue ADT

• Formally, the queue abstract data type defines a collection that keeps objects in a

sequence, where element access and deletion are restricted to the first element

in the sequence, which is called the front of the queue, and element insertion is

restricted to the end of the sequence, which is called the rear of the queue.

• This restriction enforces the rule that items are inserted and deleted in a queue

according to the first-in first-out (FIFO) principle.



Abstract Data Types cont…
Queue ADT

• The queue abstract data type (ADT) supports the following two

fundamental methods:

• enqueue(e): Insert element e at the rear of the queue.

• dequeue(): Remove and return from the queue the object at the

front; an error occurs if the queue is empty.



Abstract Data Types cont…
Queue ADT

• Additionally, the queue ADT includes the following supporting methods:

• size(): Return the number of objects in the queue.

• isEmpty(): Return a Boolean value that indicates whether the queue is

empty.

• front(): Return, but do not remove, the front object in the queue; an error

occurs if the queue is empty.



Abstract Data Types cont…
Deque ADT

• A double-ended queue (deque) is an ADT that generalizes a queue,

for which elements can be added to or removed from either the

front (head) or back (tail).

• Note: As a verb dequeue is to remove an item from a queue.

• The fundamental methods of the deque ADT are as follows:



Abstract Data Types cont…
Deque ADT

• addFirst(): Insert a new element at the beginning of the deque.

• addLast(): Insert a new element at the end.

• removeFirst(): Remove and return the first element of the deque.

• removeLast(): Remove and return the last element of the deque.



Abstract Data Types cont…
Deque ADT

• Additionally, the deque ADT also include the following methods:

• getFirst(): Return the first element of deque; an error occurs if deque is empty.

• getLast(): Return the last element of deque; an error occurs if deque is empty.

• size(): Return the number of elements of the deque.

• isEmpty(): Determine if the deque is empty.



Abstract Data Types cont…
Array list ADT

• An array is a collection of same data items stored contiguously.

• As an ADT, an array S has the following methods (besides the

standard size() and isEmpty() methods):



Abstract Data Types cont…
Array list ADT

• As an ADT, an array list S has the following methods (besides the standard size() and isEmpty()

methods):

• get(i): Return the element of S with index i; an error condition occurs if i < 0 or i > size() - 1.

• set(i, e): Replace with e and return the element at index i; an error condition occurs if i < 0 or i >

size() - 1.

• add(i, e): Insert a new element e into S to have index i; an error condition occurs if i < 0 or i >

size().

• remove(i): Remove from S the element at index i; an error condition occurs if i < 0 or i > size() - 1.



Abstract Data Types cont…
Array list ADT

• add(i, e): Insert a new element e into S at index i; error occurs if i < 0 or i > size().

• get(i): Return the element of S with index i; error occurs if i < 0 or i > size() - 1.

• set(i, e): Replace with e and return element at index i; error occurs if i < 0 or i >

size() - 1.

• remove(i): Remove from S the element at index i; error occurs if i < 0 or i > size() -

1.



Abstract Data Types cont…
Tree ADT

• A tree is an abstract data type that stores elements hierarchically.

• With the exception of the top element, each element in a tree has a

parent element and zero or more children elements.

• A tree is usually visualized by placing elements inside ovals or

rectangles, and by drawing the connections between parents and

children with straight lines.



Abstract Data Types cont…
Tree ADT

• We typically call the top element the root of the tree, but it is drawn

as the highest element, with the other elements being connected

below (just the opposite of a botanical tree).



Abstract Data Types cont…
Tree ADT

• A tree is an abstract data type that stores elements hierarchically.

• With the exception of the top element, each element in a tree has a

parent element and zero or more children elements.

• We typically call the top element the root of the tree, but it is drawn

as the highest element, with the other elements being connected

below (just the opposite of a botanical tree).



Abstract Data Types cont…
Tree ADT

• A tree is usually visualized by placing elements (called nodes) inside

ovals or rectangles.

• Elements (nodes) have connections between parents and children

with straight lines (called edges/ links).



Abstract Data Types cont…
Tree ADT



Abstract Data Types cont…
Tree ADT

• A tree with 17 nodes

representing the organization of

a fictitious corporation.

• The root stores Electronics R'Us.



Abstract Data Types cont…
Tree ADT

• The children of the root store R&D,

Sales, Purchasing, and

Manufacturing.

• The internal nodes store Sales,

International, Overseas,

Electronics R'Us, and

Manufacturing.



Abstract Data Types cont…
Tree ADT (Formal Tree Def.)

• Formally, we define a tree T as a set of nodes storing elements such

that the nodes have a parent-child relationship, that satisfies the

following properties:

1. If T is nonempty, it has a special node, called the root of T, that has

no parent.



Abstract Data Types cont…
Tree ADT (Formal Tree Def.)

2. Each node except the root node has one edge upward to another

node called parent.

3. The node below a given node connected by its edge downward is

called its child node.

4. Note that according to our definition, a tree can be empty, meaning

that it doesn't have any nodes.



Abstract Data Types cont…
Tree ADT (Formal Tree Def.)

5. Two nodes that are children of the same parent are siblings.

6. A node v is external if v has no children. External nodes are also known as leaf

nodes.

7. A node v is internal if it has one or more children.

8. The sequence of nodes along the edges of a tree is called path. There is a path

from every node to the root. This path is found by simply following successive

parent links to the root.



Abstract Data Types cont…
Tree ADT (Formal Tree Def.)



Abstract Data Types cont…
Tree ADT (Formal Tree Def.)

9. Besides parent-child relationship, tree nodes have ancestors & descendants.

10. An ancestor of a node is any other node on the path from the node to the root

(upwards).

11. Conversely, we say that a node v is a descendent of a node u if u is an ancestor

of v.

12. The descendants of a node called subtree.



Abstract Data Types cont…
Tree ADT (Formal Tree Def.)



Abstract Data Types cont…
Tree ADT (Formal Tree Def.)



Abstract Data Types cont…
Tree ADT (Formal Tree Def.)

13. The height of a node N is the length of the LONGEST path from N

to a leaf node. We usually talk about the height of a tree, which is

the height of the root node, the longest path from the root to a

leaf. All leaf nodes have height 0.



Abstract Data Types cont…
Tree ADT (Formal Tree Def.)



Abstract Data Types cont…
Tree ADT (Formal Tree Def.)

14. We also use the terms depth/ level of a node. The depth or level of

a node N is the length of the path from the root to N. The depth or

level of the root is 0.



Abstract Data Types cont…
Tree ADT (Formal Tree Def.)



Abstract Data Types cont…
Tree ADT (Formal Tree Def.)



Abstract Data Types cont…
Tree ADT (Formal Tree Def.)

15. Key represents a value of a node based on which a search

operation is to be carried out for a node.

16. Passing through nodes in a specific order is called traversing.

17. Checking the value of a node when control is on the node is called

visiting.



Abstract Data Types cont…
Tree ADT (Ordered/ Binary Tree)

• An ordered tree contains nodes (elements) which can be ordered

according to a specific criteria. Often it is a binary tree.

• A binary tree has a special condition that each node can have a

maximum of two children (conveniently called the left and right

child)..



Abstract Data Types cont…
Tree ADT (Ordered/ Binary Tree)



Abstract Data Types cont…
Tree ADT (Ordered/ Binary Tree)

• A binary tree has the benefits of both an ordered array and a linked

list.

• The search of binary tree is as quick as in a sorted array.

• And the insertion or deletion operation in binary tree are as fast as

in linked list.



Abstract Data Types cont…
Tree ADT (Ordered/ Binary Tree)

• A binary tree sometimes called Binary Search Tree (BST) is a tree in

which all the nodes follow the below-mentioned properties:

1. The left sub-tree of a node has a key less than or equal to its

parent node's key.

2. The right sub-tree of a node has a key greater than or equal to its

parent node's key.



Abstract Data Types cont…
Tree ADT (Ordered/ Binary Tree)



Abstract Data Types cont…
Tree ADT (Ordered/ Binary Tree)

• Thus, Binary Search Tree divides all its sub-trees into two segments;

the left sub-tree and the right sub-tree and can be defined as:

left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)



Abstract Data Types cont…
Tree ADT (Basic Functions)

• The tree ADT stores elements at positions, which, as with positions in

a list, are defined relative to neighboring positions (left right).

• The positions in a tree are its nodes, and neighboring positions

satisfy the parent-child relationships that define a valid tree (just we

have discussed in a binary tree).



Abstract Data Types cont…
Tree ADT (Basic Functions)

• Therefore, we use the terms "position" and "node" interchangeably

for trees.

• As with a list position, a position object for a tree supports the

method:

• element(): return the object stored at this position.



Abstract Data Types cont…
Tree ADT (Basic Functions)

• The real power of node positions in a tree, however, comes from the

accessor methods of the tree ADT that return and accept positions,

such as the following:

• root(): return the tree's root; an error occurs if the tree is empty.

• parent (v): return the parent of v; an error occurs if v is the root.



Abstract Data Types cont…
Tree ADT (Basic Functions)

• children(v): return an iterable collection containing the children of

node v.

• If a tree T is ordered, then the iterable collection, children(v), stores

the children of v in order.

• If v is an external node, then children(v) is empty.



Abstract Data Types cont…
Tree ADT (Basic Functions)

• As an abstract data type, a binary tree is a specialization of a tree that supports

four additional accessor methods:

• left(v): Return the left child of v; an error condition occurs if v has no left child.

• right(v): Return right child of v; an error condition occurs if v has no right child.

• hasLeft(v): Test whether v has a left child.

• hasRight(v): Test whether v has a right child.



Abstract Data Types cont…
Tree ADT (Basic Functions)

• In addition to the above fundamental accessor methods, we also

include the following query methods:

• isInternal(v): Test whether node v is internal.

• isExternal(v): Test whether node v is external.

• isRoot(v): Test whether node v is the root.



Abstract Data Types cont…
Tree ADT (Basic Functions)

• There are also a number of generic methods a tree should probably

support that are not necessarily related to its tree structure, including

the following:

• size(): return the number of nodes in the tree.

• isEmpty(): Test whether the tree has any nodes or not.


