
Recursion
& Analyzing
Recursive Algorithms

Arfan Shahzad
{ arfanskp@gmail.com }

Data Structures and Algorithms – CSI 401

mailto:arfanskp@gmail.com

Recursion

• Recursion is a problem-solving approach, that splits a problem into

one or more simpler versions of itself.

• It is a programming technique in which a function calls itself.

• Recursion occurs when a thing is defined in terms of itself or of its

type.

Recursion cont…

• For instance, when the surfaces of two mirrors are exactly parallel

with each other, the nested images that occur are a form of infinite

recursion.

Recursion cont…
Recursive Thinking: The General Approach

• if problem is “small enough”

• solve it directly

• else

1. break into one or more smaller subproblems

2. solve each subproblem recursively

3. combine results into solution to whole problem

Recursion cont…
Requirements for Recursive Solution

• At least one “small” case that you can solve directly

• A way of breaking a larger problem down into:

1. One or more smaller subproblems

2. Each of the same kind as the original

3. A way of combining subproblem results into an overall solution to

the larger problem

Recursion cont…
General Recursive Design Strategy

• Identify the base case(s) (for direct solution)

• Devise a problem splitting strategy

• Subproblems must be smaller

• Subproblems must work towards a base case

• Devise a solution combining strategy

Recursion cont…
Recursion Examples in math

• Mathematicians often faced recursive problems

• These lead naturally to recursive algorithms

• Examples include: Factorial, Powers, Greatest common divisor, etc.

Recursion cont…
Recursive Definitions: Factorial

• If a recursive function never reaches its base case, a stack overflow

error occurs

• 0! = 1

• n! = n x (n-1)!

Recursion cont…
Recursive Definitions: Factorial Algorithm

• int factorial (int n) {

• if (n == 0) // or: throw exception if < 0

• return 1; Base Case

• else

• return n * factorial(n-1);

• }

Recursion cont…
Recursive Definitions: Power

• x0 = 1 xn = x xn-1

• int power(int x, int n) {

• if (n <= 0) // or: throw exc. if < 0

• return 1; //Base case

• else

• return x * power(x, n-1);

• }

Recursion cont…
Recursion Versus Iteration

• Recursion and iteration are somehow similar

• Iteration: Loop repetition test determines whether to exit

• Recursion: Condition tests for a base case

• We can write iterative solution to a problem solved recursively, but:

• Recursive code often simpler than iterative

• Thus easier to write, read, and debug

Recursion cont…
Characteristics of Recursive Methods

• The recursive method calls itself to solve a smaller problem.

• The base case is the smallest problem that the routine solves and the

value is returned to the calling method. (Terminal condition).

• Calling a method involves certain overhead in transferring the control

to the beginning of the method and in storing the information of the

return point.

Recursion cont…
Characteristics of Recursive Methods

• Memory is used to store all the intermediate arguments and return

values on the internal stack.

• The most important advantage is that it simplifies the problem

conceptually.

Recursion cont…
How do I write a recursive function?

• Determine the size factor

• Determine the base case(s): the one for which you know the answer

• Determine the general case(s): the one where the problem is

expressed as a smaller version of itself

• Verify the algorithm: use the "Three-Question-Method"

Recursion cont…
Three-Question Verification Method

1. The Base-Case Question: Is there a nonrecursive way out of the function,

and does the routine work correctly for this "base" case?

2. The Smaller-Caller Question: Does each recursive call to the function

involve a smaller case of the original problem, leading inescapably to the

base case?

3. The General-Case Question: Assuming that the recursive call(s) work

correctly, does the whole function work correctly?

Recursion cont…
Deciding whether to use a recursive solution

• When the depth of recursive calls is relatively “shallow” then:

• The recursive version does about the same amount of work as the

nonrecursive version

• The recursive version is shorter and simpler than the nonrecursive solution

• But if depth of recursive calls is “deep” then avoid recursive solutions it

becomes very slow

