
Arfan Shahzad
{ arfanskp@gmail.com }

Data Structures and Algorithms

mailto:arfanskp@gmail.com




Balanced Trees

• We have seen that the efficiency of many important operations on

trees is related to the Height of the tree - for example searching,

inserting, and deleting in a BST are all O(Height).

• In general, the relation between Height (H) and the number of nodes

(N) in a tree can vary from H = N (degenerate tree) to H = log(N).



Balanced Trees cont…

• For efficiency's sake, we would like to guarantee that H was O(logN).

• One way to do this is to force our trees to be height-balanced.

• A tree is perfectly height-balanced if the left and right subtrees of any

node are the same height. e.g.



Balanced Trees cont…

• It is clear that at every level there are twice as many nodes as at the

previous level, so we do indeed get H = O(logN).

• However, perfect height balance is very rare: it is only possible if there

are exactly 2^(H+1)-1 nodes!

2
h+1

-1



Balanced Trees cont…

• As a practical alternative, we use trees that are `almost' perfectly

height balanced.

• We will say that a tree is height-balanced if the heights of the left and

right subtree's of each node are within 1. The following tree fits this

definition:

• We will say this tree is height-balanced.



Balanced Trees cont…

• How can we tell if a tree is height-balanced?

• We have to check every node.

• The fastest way is to start at the leaves and work your way up.

• When you reach a node, you will know the heights of its two

subtrees; from that you can tell whether it is height-balanced or not.



Balanced Trees cont…

• For example, in the tree above:

• C and D are leaves, and their subtrees are all height 0 so C and D are

both perfectly balanced.



Balanced Trees cont…

• Having finished D we can compute the heights of B's subtrees.

• B is not perfectly balanced, but the heights of of

its subtrees differ only by 1, so B is regarded as

height-balanced.



Balanced Trees cont…

• Now we can compute the balance of A.

• Like B, A's two subtrees also differ by 1 in height.

• We have now looked at every node; every one is height-balanced, so

the tree as a whole is considered to be height-balanced.



Balanced Trees cont…

• What about this tree - is it height-balanced?

• Answer is No



Balanced Trees cont…

• Finally, what about this one?

• Answer is No: check node b, and c



Balanced Trees cont…

• Tree is said to be height balanced if balance factor of each node is in

between -1 to 1, otherwise, the tree will be unbalanced and need to

be balanced.

• Balance Factor (k) = height (left(k)) - height (right(k))



Balanced Trees cont…

• Tree is said to be height balanced if balance factor of each node is in

between -1 to 1, otherwise, the tree will be unbalanced and need to

be balanced.

• Balance Factor (k) = height (left(k)) - height (right(k))



Balanced Trees cont…

The balance factor associated with

each node in this figure is between -1

and +1.

Therefore, it is an example of balance tree.



Balanced Trees cont…

• The following are the types of balanced trees:

1. AVL Tree

2. Red Black Tree

3. Splay Tree

4. Treap

5. B Tree

6. B+ Tree



Balanced Trees cont…
Tree (AVL Tree)

• AVL Tree is invented by GM Adelson, Velsky and Landis in 1962.

• The tree is named AVL in honour of its inventors.

• AVL Tree can be defined as height balanced binary search tree in

which each node is associated with a balance factor which is

calculated by subtracting the height of its right sub-tree from that of

its left sub-tree.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL)

• Due to the fact that, AVL tree is also a binary search tree; therefore,

all the operations are performed in the same way as they are

performed in a binary search tree.

• Searching and traversing do not lead to the violation in property of

AVL tree.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL)

• However, insertion and deletion are the operations which can violate

the property of balance factor, and therefore, they need to be

addressed here carefully.

• The tree can be balanced again after insertion or deletion by applying

various techniques of rotations.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL - Rotations)

• We perform rotation in AVL tree only in case if Balance Factor is other

than -1, 0, and 1.

• There are basically four types of rotations which are as follows:



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL - Rotations)

• LL rotation: Inserted node is in the left subtree of left subtree of A (left skewed).

• RR rotation: Inserted node is in the right subtree of right subtree of A (right

skewed).

• LR rotation: Inserted node is in the right subtree of left subtree of A (having

shape <).

• RL rotation: Inserted node is in the left subtree of right subtree of A (having

shape >).



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL - Rotations)

• The first two rotations LL and RR are single rotations and the next

two rotations LR and RL are double rotations.

• For a tree to be unbalanced, minimum height must be at least 2, Let

us understand each rotation.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL - Rotations-RR)

• When BST becomes unbalanced, due to a node is inserted into the

right subtree of the right subtree of A, then we perform RR rotation.

• RR rotation, is an anticlockwise rotation, which is applied on the edge

below a node having balance factor -2.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL - Rotations-RR)



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL - Rotations-RR)



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL - Rotations-RR)



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL - Rotations-RR)

• In this example, node A has balance factor -2 because a node C is

inserted in the right subtree of A’s right subtree.

• We perform the RR rotation on the edge below A.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL - Rotations-LL)

• When BST becomes unbalanced, due to a node is inserted into the

left subtree of the left subtree of C, then we perform LL rotation.

• LL rotation is clockwise rotation, which is applied on the edge below

a node having balance factor 2.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL - Rotations-LL)



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL - Rotations-LL)



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL - Rotations-LL)



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL - Rotations-LL)

• In above example, node C has balance factor 2 because a node A is

inserted in the left subtree of C’s left subtree.

• We perform the LL rotation on the edge below A.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL – Rotations-LR)

• Double rotations are bit tough than single rotation which has already

explained above.

• LR rotation = RR rotation + LL rotation, i.e., first RR rotation is

performed on subtree and then LL rotation is performed on full tree,

by full tree we mean the first node from the path of inserted node

whose balance factor is other than -1, 0, or 1.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL – Rotations-LR)

• A node B has been inserted into the right subtree of A the left

subtree of C, because of which C has become an unbalanced node

having balance factor 2.

• This case is LR rotation where: Inserted node is in the right subtree of

left subtree of C



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL – Rotations-LR)

• As LR rotation = RR + LL rotation, hence RR (anticlockwise) on subtree

rooted at A is performed first.

• By doing RR rotation, node A, has become the left subtree of B.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL – Rotations-LR)

• After performing RR rotation, node C is still unbalanced, i.e., having

balance factor 2, as inserted node A is in the left of left of C



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL – Rotations-LR)

• Now we perform LL clockwise rotation on full tree, i.e. on node C.

• Node C has now become the right subtree of node B, A is left subtree

of B



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL – Rotations-LR)

• Balance factor of each node is reasonable now (either -1, 0, or 1), i.e.

BST is balanced now.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL – Rotations-RL)

• As already discussed, that double rotations are bit tougher than single

rotation which has already explained above.

• RL rotation = LL rotation + RR rotation, i.e., first LL rotation is

performed on subtree and then RR rotation is performed on full tree,

by full tree we mean the first node from the path of inserted node

whose balance factor is other than -1, 0, or 1.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL – Rotations-RL)

• A node B has been inserted into the left subtree of C the right

subtree of A, because of which A has become an unbalanced node

having balance factor - 2.

• This case is RL rotation where: Inserted node is in the left subtree of

right subtree of A.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL – Rotations-RL)

• As RL rotation = LL rotation + RR rotation, hence, LL (clockwise) on

subtree rooted at C is performed first.

• By doing LL rotation, node C has become the right subtree of B.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL – Rotations-RL)

• After performing LL rotation, node A is still unbalanced, i.e. having

balance factor -2, which is because of the right-subtree of the right-

subtree node A.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL – Rotations-RL)

• Now we perform RR rotation (anticlockwise rotation) on full tree, i.e.

on node A. Node C has now become the right subtree of node B, and

node A has become the left subtree of B.



Balanced Trees cont…
Tree (AVL Tree – Operations on AVL – Rotations-RL)

• Balance factor of each node is now either -1, 0, or 1, i.e., BST is

balanced now.



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• Construct an AVL tree having the following elements:

• H, I, J, B, A, E, C, F, D



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• Insert H, I, J

H, I, J, B, A, E, C, F, D A B C D E F H I J



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• Insert H, I, J

• Node H, in the BST is unbalanced

as the Balance Factor of H is -2.

• BST is right-skewed, we will

perform RR Rotation on node H.

H, I, J, B, A, E, C, F, D A B C D E F H I J



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• The resultant Balance tree after

RR rotation is:

H, I, J, B, A, E, C, F, D A B C D E F H I J



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• Insert B, A

H, I, J, B, A, E, C, F, D A B C D E F H I J



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• On inserting A, the BST becomes

unbalanced as the Balance Factor

of H and I is 2.

• Since the BST from H is left-

skewed, we will perform LL

Rotation on node H.

H, I, J, B, A, E, C, F, D A B C D E F H I J



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• The resultant balance tree is:

H, I, J, B, A, E, C, F, D A B C D E F H I J



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• Insert E

H, I, J, B, A, E, C, F, D A B C D E F H I J



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• On inserting E, BST becomes unbalanced

as the Balance Factor of I is 2.

• Since if we travel from E to I we find that

it is inserted in the left subtree of right

subtree of I, we will perform LR Rotation

on node I.

• LR = RR + LL rotation

H, I, J, B, A, E, C, F, D A B C D E F H I J



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• We first perform RR rotation on

node B, the result is:

• Then we will perform LL

rotation on the node I, the

result is:

H, I, J, B, A, E, C, F, D A B C D E F H I J



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• Insert C, F, D

H, I, J, B, A, E, C, F, D A B C D E F H I J



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• Insert C, F, D

H, I, J, B, A, E, C, F, D A B C D E F H I J



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• On inserting C, F, D, BST becomes

unbalanced as the Balance Factor of B

and H is -2.

• Since if we travel from D to B we find

that it is inserted in the right subtree of

left subtree of B.

• We will perform RL Rotation on node I.

• RL = LL + RR rotation.

H, I, J, B, A, E, C, F, D A B C D E F H I J



Balanced Trees cont…
Tree (AVL Tree – Construction of AVL Tree)

• We first perform LL rotation on

node E, the resultant tree will be:

• We then perform RR

rotation on node B,

resultant balanced

tree will be:

H, I, J, B, A, E, C, F, D A B C D E F H I J



Balanced Trees cont…
Tree (Red Black Tree)

• The Red-Black tree is a binary search tree.

• In a binary search tree, the values of the nodes in the left subtree

should be less than the value of the root node, and the values of the

nodes in the right subtree should be greater than the value of the

root node.



Balanced Trees cont…
Tree (Red Black Tree)

• Each node in the Red-black tree contains an extra bit that represents

a color to ensure that the tree is balanced during any operations

performed on the tree like insertion, deletion, etc.



Balanced Trees cont…
Tree (Red Black Tree)

• In a binary search tree, the searching, insertion and deletion take

O(log2n) time in the average case, O(1) in the best case and O(n) in

the worst case.

• Let's understand the different scenarios of a binary search tree.



Balanced Trees cont…
Tree (Red Black Tree)

• In the above tree, if we want to search the 80.



Balanced Trees cont…
Tree (Red Black Tree)

• Therefore, it will show that the element is not found in the tree.

• After each operation, the search is divided into half.

• The above BST will take O(log n) time to search the element.



Balanced Trees cont…
Tree (Red Black Tree)

As this tree is the right-skewed BST.

So, if we want to search the 80.



Balanced Trees cont…
Tree (Red Black Tree)

• As 80 is not found in the tree.

• So, this right-skewed BST will take O(n) time to search the element.



Balanced Trees cont…
Tree (Red Black Tree)

• In the above BST, the first one is the balanced BST, whereas the

second one is the unbalanced BST.

• We conclude from the above two binary search trees that a balanced

tree takes less time than an unbalanced tree for performing any

operation on the tree.



Balanced Trees cont…
Tree (Red Black Tree)

• Therefore, we need a balanced tree, and the Red-Black tree is a self-

balanced binary search tree.

• Now, the question arises that why do we require a Red-Black tree if

AVL is also a height-balanced tree.



Balanced Trees cont…
Tree (Red Black Tree)

• The Red-Black tree is used because the AVL tree requires many

rotations when the tree is large, whereas the Red-Black tree requires

a maximum of two rotations to balance the tree.

• The main difference between the AVL tree and the Red-Black tree is

that the AVL tree is strictly balanced, while the Red-Black tree is not

completely height-balanced.



Balanced Trees cont…
Tree (Red Black Tree)

• So, the AVL tree is more balanced than the Red-Black tree, but the

Red-Black tree guarantees O(log2n) time for all operations like

insertion, deletion, and searching.

• Insertion is easier in the AVL tree as the AVL tree is strictly balanced,

whereas deletion and searching are easier in the Red-Black tree as

the Red-Black tree requires fewer rotations.



Balanced Trees cont…
Tree (Red Black Tree)

• As the name suggests that the node is either colored in Red or Black

color.

• Sometimes no rotation is required, and only recoloring is needed to

balance the tree.



Balanced Trees cont…
Tree (Red Black Tree – Properties)

• Properties of Red-Black tree are given:

1. It is a self-balancing Binary Search tree.

• Here, self-balancing means that it balances the tree itself by either

doing the rotations or recoloring the nodes.



Balanced Trees cont…
Tree (Red Black Tree – Properties)

2. This tree Balanced Trees is named as a Red-Black tree as each node is either

Red or Black.

• Every node stores one extra information “bit” that represents color of the node.

• For example, 0 bit denotes the black color while 1 bit denotes the red color.

• Other information stored by the node is similar to the binary tree, i.e., data part,

left pointer and right pointer.



Balanced Trees cont…
Tree (Red Black Tree – Properties)

3. In the Red-Black tree, the root node is always black in color.

4. If any node is Red, then its children should be in Black color. In

other words, we can say that there should be no red-red

parent-child relationship.

5. Every path from a node to any of its descendant's should have same

number of black nodes.



Balanced Trees cont…
Tree (Red Black Tree – Is AVL tree can be Red Black tree?)

• Yes, every AVL tree can be a Red-Black tree if we color each node

either by Red or Black color.

• But every Red-Black tree is not an AVL because the AVL tree is strictly

height-balanced while the Red-Black tree is not completely height-

balanced.



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

1. If the tree is empty, then we create a new node as a root node

with the color black.

2. If the tree is not empty, then we create a new node as a leaf node

with a color red.

3. If the parent of a new node is black, then exit (do nothing).



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

4. If the parent of a new node is Red, then we have to check the color

of the parent's sibling of a new node.

a) If the color is Black, then we perform rotations and recoloring.

b) If the color is Red then we recolor the node. We will also check

whether the parents' parent of a new node is the root node or

not; if it is not a root node, we will recolor and recheck the node.



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Let's understand the insertion in the Red-Black tree.

• 10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Step 1: Initially, the tree is empty, so we

create a new node having value 10.

• This is the first node of the tree, so it would

be the root node of the tree.

• As we already discussed, that root node must

be black in color, which is shown below:

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Step 2: The next node is 18.

• As 18 is greater than 10 so it will come at the

right of 10 as shown below.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Second rule: if the tree is not empty then the

newly created node will have the Red color,

therefore, node 18 has a Red color.

• Third rule: the parent of the new node is black or

not, the parent of the node is black in color;

therefore, it is a Red-Black tree.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Step 3: Now, we create the new

node having value 7 with Red color.

• As 7 is less than 10, so it will come at

the left of 10 as shown below.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Step 3: Now, we create the new

node having value 7 with Red color.

• As 7 is less than 10, so it will come at

the left of 10 as shown below.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Third rule: the parent of the new

node is black or not?

• As we can observe, the parent of the

node 7 is black in color, and it obeys

the Red-Black tree's properties.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Step 4: The next element is 15, and

15 is greater than 10, but less than

18, so the new node will be created

at the left of node 18.

• The node 15 would be Red in color

as the tree is not empty.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• The tree violates the property of the Red-Black

tree as it has Red-red parent-child relationship.

• Now we have to apply some rule to make a

Red-Black tree.

• The rule 4 says that if the new node's parent is

Red, then we have to check the color of the

parent's sibling of a new node.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• The new node is node 15; the parent

of the new node is node 18 and the

sibling of the parent node is node 7.

• As the color of the parent's sibling is

Red in color, so we apply the rule 4a.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• The rule 4a says that we have to

recolor both the parent and parent's

sibling node.

• So, both the nodes, i.e., 7 and 18,

would be recolored as shown in the

below figure.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• We also have to check whether the

parent's parent of the new node is the

root node or not.

• As we can observe in the above figure,

the parent's parent of a new node is

the root node, so we do not need to

recolor it.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Step 5: The next element is 16.

• As 16 is greater than 10 but less than 18

and greater than 15, so node 16 will

come at the right of node 15.

• The tree is not empty; node 16 would

be Red in color, as shown in the figure:

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Step 5: The next element is 16.

• As 16 is greater than 10 but less than 18

and greater than 15, so node 16 will

come at the right of node 15.

• The tree is not empty; node 16 would

be Red in color, as shown in the figure:

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• In this figure, we can observe that it

violates the property of the parent-

child relationship as it has a red-red

parent-child relationship.

• We have to apply some rules to

make a Red-Black tree.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Since the new node's parent is Red

color, and the parent of the new node

has no sibling, so rule 4a will be

applied.

• The rule 4a says that some rotations

and recoloring would be performed on

the tree.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Since node 16 is right of node 15 and

the parent of node 15 is node 18.

• Node 15 is the left of node 18. Here we

have an LR relationship, so we require

to perform two rotations.

• First, we will perform left, and then we

will perform the right rotation.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• The left rotation would be performed

on nodes 15 and 16, where node 16 will

move upward, and node 15 will move

downward.

• Once the left rotation is performed, the

tree looks like as shown in the figure:

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• The left rotation would be performed

on nodes 15 and 16, where node 16 will

move upward, and node 15 will move

downward.

• Once the left rotation is performed, the

tree looks like as shown in the figure:

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• In this figure, we can observe that there

is an LL relationship.

• The above tree has a Red-red conflict,

so we perform the right rotation.

• When we perform the right rotation,

the median element would be the root

node.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Once the right rotation is performed,

node 16 would become the root

node, and nodes 15 and 18 would be

the left child and right child,

respectively, as shown in the figure.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Once the right rotation is performed,

node 16 would become the root

node, and nodes 15 and 18 would be

the left child and right child,

respectively, as shown in the figure.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• After rotation, node 16 and node 18

would be recolored; the color of

node 16 is red, so it will change to

black, and the color of node 18 is

black, so it will change to a red color

as shown in the below figure:

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Step 6: The next element is 30.

• Node 30 is inserted at the right of

node 18.

• As the tree is not empty, so the color

of node 30 would be red.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• Step 6: The next element is 30.

• Node 30 is inserted at the right of

node 18.

• As the tree is not empty, so the color

of node 30 would be red.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• The color of the parent and parent's sibling

of a new node is Red, so rule 4b is applied.

• In rule 4b, we have to do only recoloring,

i.e., no rotations are required.

• The color of both the parent (node 18) and

parent's sibling (node 15) would become

black, as shown in the below image.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• We also have to check the parent's parent of

the new node, whether it is a root node or not.

• The parent's parent of the new node, (i.e.,

node 30) is node 16 and node 16 is not a root

node, so we will recolor the node 16 and

changes to the Red color.

• The parent of node 16 is node 10, and it is not

in Red color, so there is no Red-red conflict.

10, 18, 7, 15, 16, 30



Balanced Trees cont…
Tree (Red Black Tree – Insertion in Red Black tree)

• We also have to check the parent's parent of

the new node, whether it is a root node or not.

• The parent's parent of the new node, (i.e.,

node 30) is node 16 and node 16 is not a root

node, so we will recolor the node 16 and

changes to the Red color.

• The parent of node 16 is node 10, and it is not

in Red color, so there is no Red-red conflict.

10, 18, 7, 15, 16, 30



Data Structure cont…
Tree (Splay Tree)

• Splay trees are the self-balancing or self-adjusted binary search trees.

• In other words, we can say that the splay trees are the variants of the

binary search trees.

• The prerequisite for the splay trees, categorically is the binary search

trees.



Data Structure cont…
Tree (Splay Tree)

• As we already know, the average case time complexity of a binary search

tree is O(log n) and the time complexity in the worst case is O(n).

• In a binary search tree, the value of the left subtree is smaller than the root

node, and the value of the right subtree is greater than the root node; in

such case, the time complexity would be O(log n).

• If the binary tree is left-skewed or right-skewed, then the time complexity

would be O(n).



Data Structure cont…
Tree (Splay Tree)

• To limit the skewness, the AVL and Red-Black tree came into the

existence, having O(log n) time complexity for all the operations in all

the cases.

• We can also improve this time complexity by doing more practical

implementations, so the new Tree data structure was designed,

known as a Splay tree.



Data Structure cont…
Tree (Splay Tree)

• A splay tree is a self-balancing tree, but AVL and Red-Black trees are also self-

balancing trees then, what makes the splay tree unique two trees.

• It has one extra property that makes it unique is splaying.

• A splay tree contains the same operations as a Binary search tree, i.e., Insertion,

deletion and searching, but it also contains one more operation, i.e., splaying.

• So, all the operations in the splay tree are followed by splaying.



Data Structure cont…
Tree (Splay Tree)

• Splay trees are not strictly balanced, rather they are roughly balanced

trees.

• Let's understand the search operation in the splay-tree.

• Suppose we want to search 7 element in the tree, which is shown

below:



Data Structure cont…
Tree (Splay Tree - Search)



Data Structure cont…
Tree (Splay Tree - Search)

• After performing the search operation, we need to perform splaying.

• Here splaying means that the operation that we are performing on

any element should become the root node after performing some

rearrangements.

• The rearrangement of the tree will be done through the rotations.



Data Structure cont…
Tree (Splay Tree – Rotations)

• There are six types of rotations used for splaying:

1. Zig rotation (Right rotation)

2. Zag rotation (Left rotation)

3. Zig zag (Zig followed by zag)

4. Zag zig (Zag followed by zig)

5. Zig zig (two right rotations)

6. Zag zag (two left rotations)



Data Structure cont…
Tree (Splay Tree – Rotations – Factors)

• The following are the factors used for selecting a type of rotation:

1. Does the node which we are trying to rotate have a grandparent?

2. Is the node left or right child of the parent?

3. Is the node left or right child of the grandparent?



Data Structure cont…
Tree (Splay Tree – Rotations – Cases for the Rotations)

• Case 1: If the node does not have a grand-parent, and if it is the right

child of the parent, then we carry out the left rotation; otherwise,

the right rotation is performed.

• Case 2: If the node has a grandparent, then based on the following

scenarios; the rotation would be performed:



Data Structure cont…
Tree (Splay Tree – Rotations – Cases for the Rotations)

• Scenario 1: If the node is the right of the parent and the parent is

also right of its parent (right skewed), then (zig zig) right right

rotation is performed.

• Scenario 2: If the node is left of a parent, but the parent is right of its

parent (>), then (zig zag) right left rotation is performed .



Data Structure cont…
Tree (Splay Tree – Rotations – Cases for the Rotations)

• Scenario 3: If the node is right of the parent and the parent is right

of its parent, then (zig zig) left left rotation is performed.

• Scenario 4: If the node is right of a parent, but the parent is left of its

parent (<), then (zig zag) right-left rotation is performed.



Data Structure cont…
Tree (Splay Tree - Search)

• In the above example, we have to search 7 element in the tree. We will

follow the below steps:

• Step 1: First, we compare 7 with a root node. As 7 is less than 10, so it is a

left child of the root node.

• Step 2: Once the element is found, we will perform splaying.

• The zig (right) rotation is performed so that 7 becomes the root node of

the tree, as shown below:



Data Structure cont…
Tree (Splay Tree - Search)



Data Structure cont…
Tree (Splay Tree - Search)



Data Structure cont…
Tree (Treap)

• Treap data structure is a hybrid of a binary search tree and a heap.

• We already have enough knowledge about binary search tree.

• However, we have to understand heap:



Data Structure cont…
Tree (Treap – Heap)

• A Heap is a special Tree-based data structure in which the tree is a

complete binary tree.

• Generally, Heaps can be of two types:

1. Max-Heap

2. Min-Heap



Data Structure cont…
Tree (Treap – Heap)

• Max-Heap: In a Max-Heap the key present at the root node must be

greatest among the keys present at all of it’s children.

• The same property must be recursively true for all sub-trees in that

Binary Tree.



Data Structure cont…
Tree (Treap – Heap)

• Min-Heap: In a Min-Heap the key present at the root node must be

minimum among the keys present at all of it’s children.

• The same property must be recursively true for all sub-trees in that

Binary Tree.



Data Structure cont…
Tree (Treap – Heap)



Data Structure cont…
Tree (Treap)

• A treap data structure is a hybrid of heaps and binary search trees.

• When we create a heap, we are essentially creating an ordered binary

tree that also satisfies the "heap" characteristic.



Data Structure cont…
Tree (Treap)

• The numbers represent the heap arrangement of the data structure

(in max-heap order), while the alphabets represent the tree part.

• So we have a tree and a heap now.



Data Structure cont…
Tree (B-Tree)

• B-Tree is a self-balancing search tree.

• In most of the other self-balancing search trees (e.g.: AVL, Red-Black

and splay trees), it is assumed that everything is in main memory.

• B-trees were originally invented for storing data structures on disk,

where locality is even more crucial than with memory.



Data Structure cont…
Tree (B-Tree)

• Disk access time is very high compared to the main memory access

time.

• The main idea of using B-Trees is to reduce the number of disk

accesses.

• Most of the tree operations (search, insert, delete) require O(h) disk

accesses where h is the height of the tree.



Data Structure cont…
Tree (B-Tree)

• A B-tree of order m (maximum number of children m) is a search tree in

which each nonleaf node has up to m children.

• The actual elements of the collection are stored in the leaves of the tree,

and the nonleaf nodes contain keys only for direction.

• Each leaf stores some number of elements; the maximum number may be

greater or (typically) less than m.

• The data structure satisfies several properties:



Data Structure cont…
Tree (B-Tree)

1. Every path from the root to a leaf has the same length

2. If a node has n children, it contains n−1 keys.

3. Every node (except the root) has at least ⌈m/2⌉ child nodes (half full).

4. The elements stored in a given subtree all have keys that are between

the keys in the parent node on either side of the subtree pointer.

5. The root has at least two children if it is not a leaf.



Data Structure cont…
Tree (B-Tree)

• For example, the following is an order-5 B-tree (m=5) where the

leaves have enough space to store up to 3 data records:



Data Structure cont…
Tree (B-Tree – Operations)

• While performing some operations on B Tree, any property of B Tree

may violate such as number of minimum children a node can have.

• Let us discuss different operations on B-Tree.



Data Structure cont…
Tree (B-Tree – Operations – Search)

• Searching in B Trees is similar to that in Binary search tree.

• For example, if we search for an item 49 in the following B Tree.



Data Structure cont…
Tree (B-Tree – Operations – Search)

• The process will something like following :

1. Compare item 49 with root node 78. since 49 < 78 hence, move to

its left sub-tree.

2. Since, 40<49<56, traverse right sub-tree of 40.

3. 49>45, move to right. Compare 49.

4. match found, return.



Data Structure cont…
Tree (B-Tree – Operations – Search)

• Searching in a B tree depends upon the height of the tree.

• The search algorithm takes O(log n) time to search any element in a B

tree.



Data Structure cont…
Tree (B-Tree – Operations – Insertion)

• Insertions are done at the leaf node level.

• The following algorithm needs to be followed in order to insert:

1. Traverse the B Tree in order to find the appropriate leaf node at which

the node can be inserted.

2. If the leaf node contain less than m-1 keys then insert the element in the

increasing order.

3. Else, if the leaf node contains m-1 keys, then follow the following steps:



Data Structure cont…
Tree (B-Tree – Operations – Insertion)

a) Insert the new element in the increasing order of elements.

b) Split the node into the two nodes at the median.

c) Push the median element up to its parent node.

d) If the parent node also contain m-1 number of keys, then split it too

by following the same steps.



Data Structure cont…
Tree (B-Tree – Operations – Insertion)

• Insert the node 8 into the B Tree of order 5 shown in the following

image.

• 8 will be inserted to the right of 5, therefore insert 8.



Data Structure cont…
Tree (B-Tree – Operations – Insertion)

• The node, now contain 5 keys which is greater than (5 -1 = 4 ) keys.

• Therefore split the node from the median i.e. 8 and push it up to its

parent node shown as follows:



Data Structure cont…
Tree (B-Tree – Operations – Insertion)



Data Structure cont…
Tree (B-Tree – Operations – Deletion)

• Deletion is also performed at the leaf nodes.

• The node which is to be deleted can either be a leaf node or an

internal node.

• Following algorithm needs to be followed in order to delete a node

from a B tree.



Data Structure cont…
Tree (B-Tree – Operations – Deletion)

1. Locate the leaf node.

2. If there are more than m/2 keys in the leaf node then delete the

desired key from the node.

3. If the leaf node doesn't contain m/2 keys then complete the keys by

taking the element from right or left sibling.



Data Structure cont…
Tree (B-Tree – Operations – Deletion)

a) If the left sibling contains more than m/2 elements then push its

largest element up to its parent and move the intervening element

down to the node where the key is deleted.

b) If the right sibling contains more than m/2 elements then push its

smallest element up to the parent and move intervening element

down to the node where the key is deleted.



Data Structure cont…
Tree (B-Tree – Operations – Deletion)

4. If neither of the sibling contain more than m/2 elements then

create a new leaf node by joining two leaf nodes and the

intervening element of the parent node.

5. If parent is left with less than m/2 nodes then, apply the above

process on the parent too.



Data Structure cont…
Tree (B-Tree – Operations – Deletion)

• If the node which is to be deleted is an internal node, then replace

the node with its in-order successor or predecessor.

• Since, successor or predecessor will always be on the leaf node

hence, the process will be similar as the node is being deleted from

the leaf node.



Data Structure cont…
Tree (B-Tree – Operations – Deletion)

• Delete the node 53 from the B Tree of order 5 shown in the following

figure:

• 53 is present in the right child of element 49. Delete it.



Data Structure cont…
Tree (B-Tree – Operations – Deletion)



Data Structure cont…
Tree (B-Tree – Operations – Deletion)

• Now, 57 is the only element which is left in the node, the minimum

number of elements that must be present in a B tree of order 5, is 2.

• it is less than that, the elements in its left and right sub-tree are also

not sufficient so, merge it with left sibling and intervening element of

parent i.e. 49.



Data Structure cont…
Tree (B-Tree – Operations – Deletion)

• The final B tree is shown as follows:



Data Structure cont…
Tree (B-Tree – Applications of B Tree)

• B tree is used to index the data and provides fast access to the actual data

stored on the disks since, the access to value stored in a large database

that is stored on a disk is a very time consuming process.

• Searching an un-indexed and unsorted database containing n key values

needs O(n) running time in worst case.

• However, if we use B Tree to index this database, it will be searched in

O(log n) time in worst case.



Data Structure cont…
Tree (B+ Tree)

• B+ Tree is an extension of B Tree which allows efficient insertion,

deletion and search operations.

• In B Tree, Keys and records both can be stored in the internal as well

as leaf nodes.

• Whereas, in B+ tree, records (data) can only be stored on the leaf

nodes while internal nodes can only store the key values.



Data Structure cont…
Tree (B+ Tree)

• The leaf nodes of a B+ tree are linked together in the form of a singly linked

lists to make the search queries more efficient.

• B+ Tree are used to store the large amount of data which can not be stored

in the main memory.

• Due to the fact that, size of main memory is always limited, the internal

nodes (keys to access records) of the B+ tree are stored in the main

memory whereas, leaf nodes are stored in the secondary memory.



Data Structure cont…
Tree (B+ Tree)

• The internal nodes of B+ tree are often called index nodes.

• A B+ tree of order 3 is shown in the following figure.



Data Structure cont…
Tree (B+ Tree – Advantages of B + Tree)

1. Records can be fetched in equal number of disk accesses.

2. Height of the tree remains balanced and less as compare to B tree.

3. We can access the data stored in a B+ tree sequentially/ directly.

4. Keys are used for indexing.

5. Faster search queries as the data is stored only on the leaf nodes.



Data Structure cont…
Tree (B+ Tree – B-Tree vs. B + Tree)

Sr. B Tree B+ Tree

1 Search keys can not be repeatedly

stored.

Redundant search keys can be present.



Data Structure cont…
Tree (B+ Tree – B-Tree vs. B + Tree)

Sr. B Tree B+ Tree

1 Search keys can not be repeatedly

stored.

Redundant search keys can be present.

2 Data can be stored in leaf nodes as well

as internal nodes

Data can only be stored on the leaf nodes.



Data Structure cont…
Tree (B+ Tree – B-Tree vs. B + Tree)

Sr. B Tree B+ Tree

1 Search keys can not be repeatedly

stored.

Redundant search keys can be present.

2 Data can be stored in leaf nodes as well

as internal nodes

Data can only be stored on the leaf nodes.

3 Searching for some data is a slower

process since data can be found on

internal nodes as well as on the leaf

nodes.

Searching is comparatively faster as data can

only be found on the leaf nodes.



Data Structure cont…
Tree (B+ Tree – B-Tree vs. B + Tree)

Sr. B Tree B+ Tree

1 Search keys can not be repeatedly

stored.

Redundant search keys can be present.

2 Data can be stored in leaf nodes as well

as internal nodes

Data can only be stored on the leaf nodes.

3 Searching for some data is a slower

process since data can be found on

internal nodes as well as on the leaf

nodes.

Searching is comparatively faster as data can

only be found on the leaf nodes.

4 Leaf nodes can not be linked together. Leaf nodes are linked together to make the

search operations more efficient.



Data Structure cont…
Tree (B+ Tree – Insertion in B + Tree)

• The process of insertion in B+ tree is given below:

• Step 1: Insert the new node as a leaf node

• Step 2: If the leaf doesn't have required space, split the node and

copy the middle node to the next index node.

• Step 3: If the index node doesn't have required space, split the node

and copy the middle element to the next index page.



Data Structure cont…
Tree (B+ Tree – Insertion in B + Tree)

• Insert the value 195 into the B+ tree of order 5 shown in the following

figure.

• 195 will be inserted in the right sub-tree of 120 after 190.

• Insert it at the desired position.



Data Structure cont…
Tree (B+ Tree – Insertion in B + Tree)

• The node contains greater than the maximum number of elements

i.e. 4, therefore split it and place the median node up to the parent.



Data Structure cont…
Tree (B+ Tree – Insertion in B + Tree)

• Now, the index node contains 6 children and 5 keys which violates the

B+ tree properties, therefore we need to split it, shown as follows.



Data Structure cont…
Tree (B+ Tree – Insertion in B + Tree)



Data Structure cont…
Tree (B+ Tree – Deletion in B + Tree)

• The process of deletion in B+ tree is given below:

• Step 1: Delete the key and data from the leaves.

• Step 2: if the leaf node contains less than minimum number of elements,

merge down the node with its sibling and delete the key in between them.

• Step 3: if the index node contains less than minimum number of elements,

merge the node with the sibling and move down the key in between them.



Data Structure cont…
Tree (B+ Tree – Deletion in B + Tree)

• Delete the key 200 from the B+ Tree shown in the following figure.

• 200 is present in the right sub-tree of 190, after 195. delete it.



Data Structure cont…
Tree (B+ Tree – Deletion in B + Tree)

• Merge the two nodes by using 195, 190, 154 and 129.



Data Structure cont…
Tree (B+ Tree – Deletion in B + Tree)

• Now, element 120 is the single element present in the node which is violating the B+ Tree
properties.

• Therefore, we need to merge it by using 60, 78, 108 and 120.



Data Structure cont…
Tree (B+ Tree – Deletion in B + Tree)

• Now, the height of B+ tree will
be decreased by 1.


