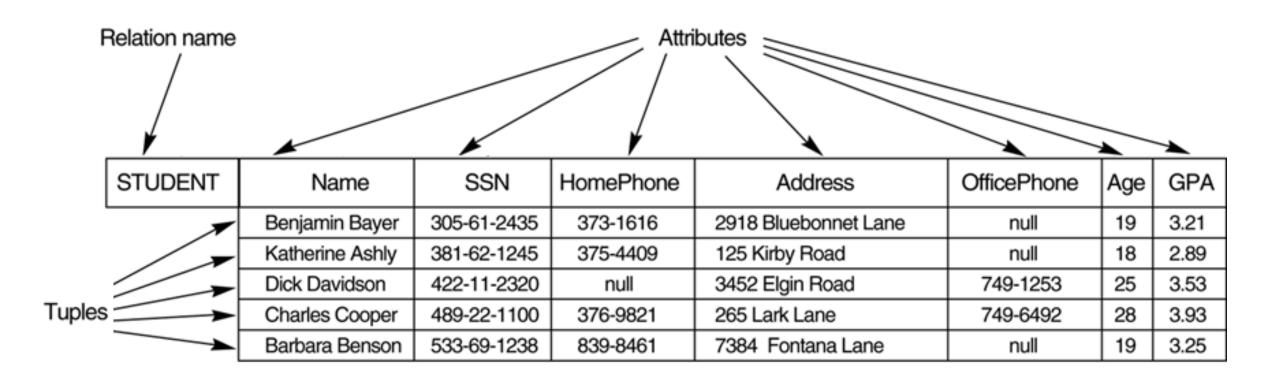
Relational Data Mode (Part 2)

CSI-406 Database Systems

Online Online DBMS Pusiness Pusiness

Arfan Shahzad

{ arfanskp@gmail.com }


Relational Data Model Informal vs. Formal Definitions

Informal Terms	Formal Terms
Table	Relation
Column	Attribute/ Domain
Row	Tuple/ Record
Values in a column	(belongs to) Domain
Table Definition	Schema / Intension
Populated Table	State / Extension

Relational Data Model cont...

Relational Data Model cont... Characteristics of Relations

- Ordering of tuples in a relation r(R): The tuples are not considered to be ordered, even though they appear to be in the tabular form.
- <u>Values in a tuple</u>: All values are considered *atomic (indivisible)*. A *special <u>null</u> value* is used to represent values that are unknown or inapplicable to certain tuples.

Relational Data Model cont... Characteristics of Relations

- Ordering of attributes in a relation schema R (and of values within each tuple): We will consider the attributes in R(A₁, A₂, ..., A_n) and the values in t=<v₁, v₂, ..., v_n> to be ordered. (However, a more general alternative definition of relation does not require this ordering).
- At a more abstract level, the order of attributes and their values is not important; as long as the <u>correspondence</u> between attributes and values is maintained.

Relational Data Model cont... Characteristics of Relations

STUDENT

Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3.21

- The degree of a relations is the <u>number of columns</u> in a given relation (table).
- A relation schema, R of degree n is denoted by <u>R (A1, A2, ..., An)</u>.
- The uppercase letters <u>Q, R, S</u> denote <u>relation schema</u>.
- The lowercase letters <u>q, r, s</u> denote <u>relation states</u>.
- The letters <u>t, u, v</u> denote <u>tuples</u>.

- An attribute A can be qualified with the <u>relation name R</u> to *which it* belongs by <u>using the dot notation R.A</u>—for example, STUDENT.Name or STUDENT.Age.
- This is because *the same name may be used for two attributes in different relations*.
- However, all attribute names in a particular relation must be distinct.

- An n-tuple t in a relation r(R) is denoted by t = <v1, v2, ..., vn>, where vi is the value corresponding to attribute Ai.
- The following notation refers to component values of tuples:
- Both <u>t[Ai]</u> and <u>t.Ai</u> (and sometimes <u>t[i]</u>) *refers to the value vi in t for attribute Ai*.

- As an example, consider the tuple:
- t = <'Barbara Benson', '533-69-1238', '(817)839-8461', '7384 Fontana
 Lane', NULL, 19, 3.25>;
- We have t[Name] = <'Barbara Benson'>, and t[Ssn, Gpa, Age] = <'533-69-1238',3.25, 19>.

- Constraints are <u>conditions</u> that must hold on all valid relation instances. There are three main types of constraints:
- 1. Inherent model-based constraints or implicit constraints.
- 2. Schema-based constraints or explicit constraints.
- 3. Application-based or semantic constraints or business rules

- Inherent in the data model called <u>inherent model-based constraints</u> or <u>implicit</u> <u>constraints</u>: a relation <u>cannot have duplicate tuple</u> is inherent constraint.
- Can be *directly expressed in schema of the data model*, typically by *specifying them in the DDL*, called <u>schema-based constraints</u> or <u>explicit constraints</u> (e.g. Entity integrity constraints and Referential integrity constraints)
- Cannot be directly expressed in the schemas of the data model, and hence must be expressed and enforced by the application programs, called <u>application-based</u> or <u>semantic constraints</u> or <u>business rules</u>.

- Elaborating upon **schema-based constraints**:
- **1. Domain Constraints**
- 2. Key Constraints
- 3. Entity Integrity Constraint
- 4. Referential Integrity Constraint

- Each attribute value must be either null (which is really a non-value) or drawn from the domain of that attribute.
- Note that some DBMS's allow you to impose the not null constraint upon an attribute, which is to say that <u>no tuple</u> (in the relevant relation) is allowed to have the (non-)value null in that attribute.

- Super key of R: A set of attributes SK of R such that two tuples in any valid relation instance r(R) will never have the same value for SK. That is, for any distinct tuples t1 and t2 in r(R), t1[SK] ≠ t2[SK].
- <u>Key of R:</u> A "minimal" superkey; that is, a superkey from which *we* cannot remove any attributes and still have the uniqueness constraint.
- <u>Candidate Key:</u> A relation may have two or more super keys, all these super keys will called as <u>candidate keys</u> (to become primary key).

- Primary key: Successful candidate key will be called primary key. In schema, the primary key attributes are <u>underlined</u>.
- **Example**: The CAR relation schema:
- CAR (<u>State</u>, <u>Reg#</u>, SerialNo, Make, Model, Year):
- Has two keys Key1 = {State, Reg#}, Key2 = {SerialNo, Make}, which are

also superkeys. {SerialNo, Make} is a superkey but not a key.

The CAR relation with two candidate keys: LicenseNumber and EngineSerialNumber.

CAR	LicenseNumber	EngineSerialNumber	Make	Model	Year
	Texas ABC-739	A69352	Ford	Mustang	96
	Florida TVP-347	B43696	Oldsmobile	Cutlass	99
	New York MPO-22	X83554	Oldsmobile	Delta	95
	California 432-TFY	C43742	Mercedes	190-D	93
	California RSK-629	Y82935	Toyota	Camry	98
	Texas RSK-629	U028365	Jaguar	XJS	98

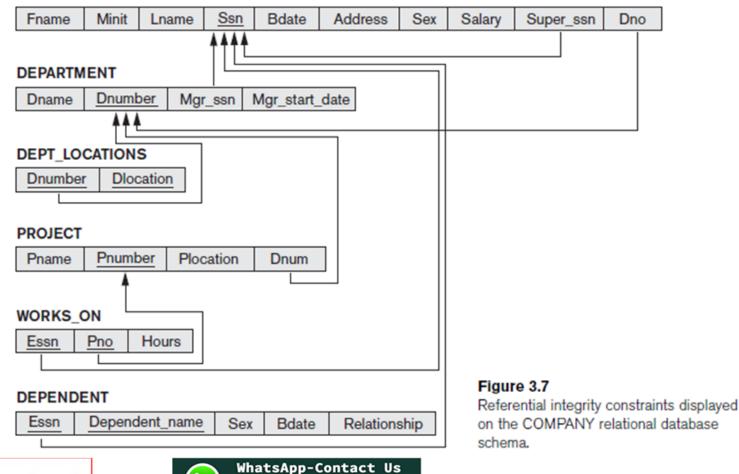
EMPLOYEE			Schema Diagram for COMPANY relation database Schema							
	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	DEPARTMENT							Primary k	eys are und	erlined
	DNAME		<u>ER</u> MGR	ISSN	MGRSTAF	TDATE				
DEPT_LOCATIONS DNUMBER DLOCATION PROJECT										
PNAME PNUMBER PLOCATION DNUM										
		PNO HO	URS							
	DEPENDENT									
	ESSN	DEPENDEN	T_NAME_	SEX	BDATE	RELATIONSHIP	Р			
Ar	ArfanShahzadTech WhatsApp-Contact Us 0345-5922495									

- Relational Database Schema: A set S of relation schemas that belong to the same database. S is the *name* of the **database**. S = { R_1 , R_2 , ..., R_n }
- Entity Integrity: The primary key attributes PK of each relation schema R in S cannot have null values in any tuple of r(R). This is because primary key values are used to identify the individual tuples.
- t[PK] ≠ null for any tuple t in r(R)

 <u>Note</u>: Other attributes of R may be similarly constrained to disallow null values, even though they are not members of the primary key (until, unless specified).

- A special constraint involving *two* relations, used to specify a *relationship* <u>among tuples in two relations</u>: the referencing relation and the referenced relation.
- The previous constraint (i.e. Entity Integrity) involve a *single* relation.

- Tuples in the *referencing relation* R₁ have attributes <u>FK</u> (called foreign key attributes) that reference the primary key attributes PK of the *referenced relation* R₂.
- A tuple t_1 in R_1 is said to <u>reference</u> a tuple t_2 in R_2 if $t_1[FK] = t_2[PK]$.
- A referential integrity constraint can be displayed in a relational database schema <u>as a directed arc from R_1 .FK to R_2 </u>.



- Statement of the constraint: The value in the foreign key column (or columns) FK of the referencing relation R_1 can be <u>either</u>:
- (1) Same as a value of an **existing primary key value** of the corresponding primary key PK in the **referenced relation** R_{2,}, or..
- (2) a null.
- In case (2), the FK in R₁ should <u>not</u> be a part of its own primary key.

EMPLOYEE

Relational Data Model cont... Other Types of Constraints

- Semantic Integrity Constraints: based on application semantics and cannot be expressed by the data model (or DDL). E.g.,
 - The max. no. of hours per employee for all projects (he or she works on) is 56 hrs per week
 - Salary of a supervisee cannot be greater than that of her/his supervisor
 - Salary of an employee cannot be lowered
 - A department manager cannot be less than 35 years old

Class Assignment

- Consider the following relations for a database that keeps track of student enrollment in courses and the books adopted for each course:
- STUDENT(<u>SSN</u>, Name, Major, Bdate)
- COURSE(<u>Course#</u>, Cname, Dept)
- ENROLL(<u>SSN</u>, <u>Course#</u>, <u>Quarter</u>, Grade)
- BOOK_ADOPTION(<u>Course#</u>, <u>Quarter</u>, Book_ISBN)
- TEXT(Book ISBN, Book_Title, Publisher, Author)
- Draw a relational schema diagram specifying the foreign keys for this schema.

