eational

CSI-406 Database Systems

Arfan Shahzad

{ <u>arfanskp@gmail.com</u> }

Relational Algebra

- The basic set of operations for the *relational model* is known as the *relational algebra*.
- These operations enable a user to specify *basic retrieval requests*.
- The result of a retrieval is a *new relation*, which may have been *formed from one or more relations*.

- The **algebra operations** thus produce new relations, which can be further manipulated using operations of the same algebra.
- A sequence of relational algebra operations forms a *relational algebra expression*, whose result will also be a relation that represents the result of a *database query* (or retrieval request).

- **SELECT Operation:** SELECT operation is used to select a *subset* of the tuples from a relation that satisfy a *selection condition*.
- Selection condition a filter that keeps only those tuples that satisfy a qualifying condition "those satisfying the condition are selected while others are discarded".

- **Example:** To select the EMPLOYEE tuples whose department number is four or those whose salary is greater than \$30,000 the following notation is used:
- $\sigma_{DNO=4}$ (EMPLOYEE)
- $\sigma_{SALARY > 30,000}$ (EMPLOYEE)

• In general, the select operation is denoted by $\sigma_{\text{selection condition}}(\mathbf{R})$ where the symbol σ (sigma) is used to denote the *select operator*, and the *selection condition* is a *Boolean expression* specified on the *attributes of relation* \mathbf{R} .

Unary Relational Operations (SELECT Operation Properties)

- The SELECT operation $\sigma_{<selection condition>}$ (R) produces a relation S that has the same schema as R
- The SELECT operation σ is **commutative;** i.e.:
- $\sigma_{<condition1>}(\sigma_{<condition2>}(R)) = \sigma_{<condition2>}(\sigma_{<condition1>}(R))$

Relational Algebra cont... Unary Relational Operations (SELECT Operation Properties)

- A cascaded SELECT operation may be applied in any order; i.e.,
- $\sigma_{<condition1>}(\sigma_{<condition2>}(\sigma_{<condition3>}(R)) = \sigma_{<condition2>}(\sigma_{<condition3>}(\sigma_{<condition1>}(R)))$
- A cascaded SELECT operation may be replaced by a single selection with a conjunction of all the conditions; i.e.,
- $\sigma_{\text{condition1>}}(\sigma_{\text{condition2>}}(R)) = \sigma_{\text{condition1>}AND < \text{condition2>}}(R))$

Relational Algebra cont... Unary Relational Operations (SELECT & PROJECT)

Figure 6.1

Results of SELECT and PROJECT operations. (a) $\sigma_{(Dno=4 \text{ AND Salary}>25000) \text{ OR (Dno=5 AND Salary>30000)}}$ (EMPLOYEE). (b) $\pi_{Lname, Fname, Salary}$ (EMPLOYEE). (c) $\pi_{Sex, Salary}$ (EMPLOYEE).

(a)

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	К	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	3334455555	5

(b)

Lname	Fname	Salary
Smith	John	30000
Wong	Franklin	40000
Zelaya	Alicia	25000
Wallace	Jennifer	43000
Narayan	Ramesh	38000
English	Joyce	25000
Jabbar	Ahmad	25000
Borg	James	55000

(c)

(-)	
Sex	Salary
Μ	30000
Μ	40000
F	25000
F	43000
Μ	38000
Μ	25000
Μ	55000

- This operation *selects certain columns* from the table and *discards the other columns*.
- The PROJECT creates a vertical partitioning one with the needed columns (attributes) containing results of the operation and other containing the discarded Columns.

- Example: To list each <u>employee's first</u> and <u>last name</u> and <u>salary</u>, the following is used:
- $\pi_{\text{LNAME, FNAME, SALARY}}$ (EMPLOYEE)

- The general form of the project operation is π<attribute list>(R) where

 π (pi) is the symbol used to represent the project operation and
 <attribute list> is the desired list of attributes from the attributes of
 relation R.
- The project operation *removes any duplicate tuples*, so the result of the project operation is a set of tuples and hence a valid relation.

Unary Relational Operations (PROJECT operation properties)

- The number of tuples in the result of projection $\pi_{<|ist>}(R)$ is always *less or equal to the number of tuples in R*.
- If the list of attributes includes a key of R, then the number of tuples (in a result of project) is equal to the number of tuples in R.

• $\pi_{\langle \text{list1} \rangle} (\pi_{\langle \text{list2} \rangle} (R)) = \pi_{\langle \text{list1} \rangle} (R)$ as long as <list1> contains the attributes in <list2>

Unary Relational Operations (PROJECT operation properties)

Figure 6.1

Results of SELECT and PROJECT operations. (a) $\sigma_{(Dno=4 \text{ AND Salary}>25000)}$ OR (Dno=5 AND Salary>30000) (EMPLOYEE). (b) $\pi_{Lname, Fname, Salary}$ (EMPLOYEE). (c) $\pi_{Sex, Salary}$ (EMPLOYEE).

(a)

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	3334455555	5

(b)

()		
Lname	Fname	Salary
Smith	John	30000
Wong	Franklin	40000
Zelaya	Alicia	25000
Wallace	Jennifer	43000
Narayan	Ramesh	38000
English	Joyce	25000
Jabbar	Ahmad	25000
Borg	James	55000

(c)

Sex	Salary
М	30000
М	40000
F	25000
F	43000
М	38000
М	25000
М	55000

Unary Relational Operations (PROJECT operation properties)

- The number of tuples in the result of projection $\pi_{<|ist>}(R)$ is always *less or equal to the number of tuples in R*.
- If the list of attributes includes a key of R, then the number of tuples (in a result of project) is equal to the number of tuples in R.

• $\pi_{\langle \text{list1} \rangle} (\pi_{\langle \text{list2} \rangle} (R)) = \pi_{\langle \text{list1} \rangle} (R)$ as long as <list1> contains the attributes in <list2>

- We may want to apply several relational algebra operations one after the other.
- Either we can write the operations as a single **relational algebra expression** by nesting the operations, or we can apply one operation

at a time and create **intermediate result relations**.

- In the latter case, we must give names to the relations that hold the intermediate results.
- Example: To retrieve the *first name, last name,* and *salary* of all <u>employees</u> who work in *department number 5,* we must apply a <u>select</u> and a <u>project</u> operation. We can write a single relational algebra expression as follows: $\pi_{\text{FNAME, LNAME, SALARY}}(\sigma_{\text{DNO=5}}(\text{EMPLOYEE}))$

- OR, we can explicitly show the sequence of operations, giving a name to each intermediate relation:
- DEP5_EMPS $\leftarrow \sigma_{DNO=5}(EMPLOYEE)$
- RESULT $\leftarrow \pi_{\text{FNAME, LNAME, SALARY}}$ (DEP5_EMPS)

- \bullet The rename operator is ρ
- The general Rename operation can be expressed by any of the following forms:

• $\rho_{s(B_1, B_2, ..., B_n)}$ (R) is a renamed relation S based on R with column names $B_1, B_1, ..., B_n$.

- ρ_s (R) is a renamed relation S based on R (which does not specify column names).
- $\rho_{(B_1, B_2, ..., B_n)}$ (R) is a renamed relation with column names B_1 , B_2 , B_n which does not specify a new relation name.

- (2	1
	а	

Fname	Lname	Salary
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

Figure 6.2

Results of a sequence of operations. (a) $\pi_{\text{Fname, Lname, Salary}}$ ($\sigma_{\text{Dno}=5}$ (EMPLOYEE)). (b) Using intermediate relations and renaming of attributes.

(b)

TEMP

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston,TX	Μ	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston,TX	М	40000	888665555	5
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble,TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

R

First_name	Last_name	Salary
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

- The result of this operation, denoted by $\mathbf{R} \cup \mathbf{S}$, is a relation that includes all tuples that are either in \mathbf{R} or in \mathbf{S} or in both \mathbf{R} and \mathbf{S} .
- Duplicate tuples are eliminated.
- Example: To retrieve the <u>social security numbers</u> of all <u>employees</u> who either work in department 5 or directly supervise an employee who works in department 5, we can use the union operation as follows:

- DEP5_EMPS $\leftarrow \sigma_{DNO=5}$ (EMPLOYEE)
- RESULT1 $\leftarrow \pi_{SSN}$ (DEP5_EMPS)
- RESULT2 (SSN) $\leftarrow \pi_{\text{SUPERSSN}}$ (DEP5_EMPS)

• RESULT \leftarrow RESULT1 \cup RESULT2

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	3334455555	5

- As a single relational algebra expression, this becomes:
- Result $\leftarrow \pi_{\text{Ssn}} (\sigma_{\text{Dno=5}} (\text{EMPLOYEE})) \cup \pi_{\text{Super_ssn}} (\sigma_{\text{Dno=5}} (\text{EMPLOYEE}))$
- The union operation produces the tuples that are in either RESULT1 or RESULT2 or both. The two operands must be "type compatible".

Relational Algebra cont... Operations From Set Theory (Type Compatibility)

- The operand relations R₁(A₁, A₂, ..., A_n) and R₂(B₁, B₂, ..., B_n) must have the same number of attributes, and the domains of corresponding attributes must be compatible; that is, dom(A_i)=dom(B_i) for i=1, 2, ..., n.
- The resulting relation for $R_1 \cup R_2$, $R_1 \cap R_2$, or $R_1 R_2$ has the same attribute names as the *first* operand relation R1 (by convention).

Operations From Set Theory (Type Compatibility)

Figure 6.4

STUDENT U INSTRUCTOR

The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations. (b) STUDENT ∪ INSTRUCTOR.

(a) STUDENT

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

INSTRUCTOR

Fname	Lname		
John	Smith		
Ricardo	Browne		
Susan	Yao		
Francis	Johnson		
Ramesh	Shah		

(n)	

Fn	Ln		
Susan	Yao		
Ramesh	Shah		
Johnny	Kohler		
Barbara	Jones		
Amy	Ford		
Jimmy	Wang		
Ernest	Gilbert		
John	Smith		
Ricardo	Browne		
Francis	Johnson		

• UNION Example STUDENT \cup INSTRUCTOR

Relational Algebra cont... Operations From Set Theory (Type Compatibility)

- The operand relations R₁(A₁, A₂, ..., A_n) and R₂(B₁, B₂, ..., B_n) must have the same number of attributes, and the domains of corresponding attributes must be compatible; that is, dom(A_i)=dom(B_i) for i=1, 2, ..., n.
- The resulting relation for $R_1 \cup R_2$, $R_1 \cap R_2$, or $R_1 R_2$ has the same attribute names as the *first* operand relation R1 (by convention).

- The result of this operation, denoted by $R \cap S$, is a relation that includes all tuples that are in both R and S.
- The two **operands** must be "**type compatible**"
- **Example:** The result of the intersection operation (figure below) includes only those who are both students and instructors.

Figure 6.4

The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations. (c) STUDENT ∩ INSTRUCTOR.

(a)	STUDENT	•
(4)	STODEN	

STUDENT				
Fn	Ln			
Susan	Yao			
Ramesh	Shah			
Johnny	Kohler			
Barbara	Jones			
Amy	Ford			
Jimmy	Wang			
Ernest	Gilbert			

INSTRUCTOR

Fname	Lname	
John	Smith	
Ricardo	Browne	
Susan	Yao	
Francis	Johnson	
Ramesh	Shah	

(c)	Fn	Ln
	Susan	Yao
	Ramesh	Shah

• INTERSECTION Example STUDENT ∪ INSTRUCTOR

- MINUS operation, also called **Set Difference** Operation
- The result of this operation, denoted by **R S**, is a relation that includes all tuples that are **in R but not in S**.
- The two **operands** must be "**type compatible**".
- **Example:** The figure shows the names of students who are not instructors, and the names of instructors who are not students.

Figure 6.4

The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations. (d) STUDENT – INSTRUCTOR. (e) INSTRUCTOR – STUDENT.

(a)	(a) STUDENT		INSTRUCTOR			(d)		(e)			
	Fn	Ln	Fname	Lname		Fn	Ln][Fname	Lname	
	Susan	Yao	John	Smith		Johnny	Kohler	ΙΓ	John	Smith	
	Ramesh	Shah	Ricardo	Browne		Barbara	Jones	1Г	Ricardo	Browne	
	Johnny	Kohler	Susan	Yao		Amy	Ford][Francis	Johnson	
	Barbara	Jones	Francis	Johnson		Jimmy	Wang]-			
	Amy	Ford	Ramesh	Shah		Ernest	Gilbert]			
	Jimmy	Wang					-	-			
	Ernest	Gilbert	Set Dif	ference	; ((or MI	NUS) () p	eratio	n Exam	ple

D= STUDENT – INSTRUCTOR E= INSTRUCTOR - STUDENT

Figure 6.4

(a)

(c)

Fn

Ramesh

Susan

The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations. (b) STUDENT ∪ INSTRUCTOR. (c) STUDENT ∩ INSTRUCTOR. (d) STUDENT – INSTRUCTOR. (e) INSTRUCTOR – STUDENT.

Lname

Browne Yao

Johnson Shah

Smith

		INSTRUC
Ln		Fname
Yao		John
Shah		Ricardo
Kohler		Susan
Jones		Francis
Ford		Ramesh
Wang		
Gilbert		
	Yao Shah Kohler Jones Ford Wang	Ln Yao Shah Kohler Jones Ford Wang

Ln

Yao

Shah

(b)	Fn	Ln
	Susan	Yao
	Ramesh	Shah
	Johnny	Kohler
	Barbara	Jones
	Amy	Ford
	Jimmy	Wang
	Ernest	Gilbert
	John	Smith
	Ricardo	Browne
	Francis	Johnson

(d)	Fn	Ln
	Johnny	Kohler
	Barbara	Jones
	Amy	Ford
	Jimmy	Wang
	Ernest	Gilbert

(e)	Fname	Lname
	John	Smith
	Ricardo	Browne
	Francis	Johnson

- Notice that both union and intersection are *commutative operations;* that is:
- $\mathbf{R} \cup \mathbf{S} = \mathbf{S} \cup \mathbf{R}$, and $\mathbf{R} \cap \mathbf{S} = \mathbf{S} \cap \mathbf{R}$
- The minus operation is *not commutative;* that is, in general:

• $\mathbf{R} - \mathbf{S} \neq \mathbf{S} - \mathbf{R}$

- Both union and intersection can be treated as n-ary operations applicable to any number of relations as both are *associative operations;* that is:
- $\mathbf{R} \cup (\mathbf{S} \cup \mathbf{T}) = (\mathbf{R} \cup \mathbf{S}) \cup \mathbf{T}$, and $(\mathbf{R} \cap \mathbf{S}) \cap \mathbf{T} = \mathbf{R} \cap (\mathbf{S} \cap \mathbf{T})$

