

Digital Logic and Design



Arfan Shahzad

{ arfanskp@gmail.com }

Course Outline

Digital Logic Design

Course Contents:

Number Systems, Logic Gates, Boolean Algebra, Combination logic circuits and designs, Simplification Methods (K-Map, Quinn Mc-Cluskey method), Flip Flops and Latches, Asynchronous and Synchronous circuits, Counters, Shift Registers, Counters, Triggered devices & its types. Binary Arithmetic and Arithmetic Circuits, Memory Elements, State Machines. Introduction Programmable Logic Devices (CPLD, FPGA); Lab Assignments using tools such as Verilog HDL/VHDL, MultiSim

Reference Material:

- 1. Digital Fundamentals by Floyd, 11/e.
- 2. Fundamental of Digital Logic with Verilog Design, Stephen Brown, 2/e.

Postulates and Theorems

• The postulates are basic axioms of the algebraic structure and need no proof.

• The theorems must be proven from the postulates.

Duality

 Some postulates are listed here in pairs and designated by part (a) and part (b):

- **1.** (a) The structure is closed with respect to the operator +.
 - (b) The structure is closed with respect to the operator •.
- 2. (a) The element 0 is an identity element with respect to +; that is, x + 0 = 0 + x = x.
 - (b) The element 1 is an identity element with respect to \cdot ; that is, $x \cdot 1 = 1 \cdot x = x$.

- 3. (a) The structure is commutative with respect to +; that is, x + y = y + x.
 - (b) The structure is commutative with respect to \cdot ; that is, $x \cdot y = y \cdot x$.
- **4.** (a) The operator \cdot is distributive over +; that is, $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$.
 - (b) The operator + is distributive over \cdot ; that is, $x + (y \cdot z) = (x + y) \cdot (x + z)$.
- 5. For every element $x \in B$, there exists an element $x' \in B$ (called the *complement* of x) such that (a) x + x' = 1 and (b) $x \cdot x' = 0$.
- **6.** There exist at least two elements $x, y \in B$ such that $x \neq y$.

- One part may be obtained from the other if the binary operators and the identity elements are interchanged.
- If the *dual* of an algebraic expression is desired, we simply interchange **OR** and **AND** operators and replace **1's** by **0's** and **0's** by **1's**.

- This important property of Boolean algebra is called the *duality principle* and states that:
- "every algebraic expression deducible from the postulates of Boolean algebra remains valid if the operators and identity elements are interchanged"

Postulate 2

$$x + 0 = x$$

(b)

$$x \cdot 1 = x$$

Postulate 5

$$x + x' = 1$$

(b)

$$x \cdot x' = 0$$

Theorem 1

$$x + x = x$$

(b)

$$x \cdot x = x$$

Theorem 2

$$x + 1 = 1$$

(b)

$$x \cdot 0 = 0$$

Theorem 3, involution

$$(x')' = x$$

Postulate 3, commutative

$$x + y = y + x$$

(b)

$$xy = yx$$

Theorem 4, associative

(a)
$$x + (y + z) = (x + y) + z$$

$$x(yz) = (xy)z$$

Postulate 4, distributive

(a)
$$x(y+z) = xy + xz$$

(b)
$$x + yz = (x + y)(x + z)$$

Theorem 5, DeMorgan

$$(a) \qquad (x+y)' = x'y'$$

(b)
$$(xy)' = x' + y'$$

Theorem 6, absorption

(a)
$$x + xy = x$$

$$(b) \quad x(x+y)=x$$

Theorem Proof

$$x + x = x$$
.

Statement

$$x + x = (x + x) \cdot 1$$

$$= (x + x)(x + x')$$

$$= x + xx'$$

$$= x + 0$$

$$= x$$

Justification

postulate 2(b)
5(a)
4(b)
5(b)
2(a)

$$x \cdot x = x$$
.

Statement

$$x \cdot x = xx + 0$$

$$= xx + xx'$$

$$= x(x + x')$$

$$= x \cdot 1$$

$$= x$$

Justification

postulate 2(a)
5(b)
4(a)
5(a)
2(b)

$$x + 1 = 1$$
.

 $x \cdot 0 = 0$ by duality.

Statement

$$x + 1 = 1 \cdot (x + 1)$$

$$= (x + x')(x + 1)$$

$$= x + x' \cdot 1$$

$$= x + x'$$

$$= 1$$

Justification

postulate 2(b)

5(a)

4(b)

2(b)

5(a)

$$x + xy = x$$
.

Statement

= x

$$x + xy = x \cdot 1 + xy$$

$$= x(1 + y)$$

$$= x(y + 1)$$

$$= x \cdot 1$$

Justification

postulate 2(b)
4(a)
3(a)
2(a)
2(b)

• The other way to proof a theorem is a **truth table**:

X	y
0	0
0	1
1	0
1	1

xy	x + xy
0	0
0	0
0	1
1	1

• Tthe truth table for the first DeMorgan's theorem:

X	y	x + y	(x + y)'
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

x'	y'	x'y'
1	1	1
1	0	0
0	1	0
0	0	0

• Tthe truth table for the first DeMorgan's theorem:

X	y	x + y	(x + y)'
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

x'	y'	x'y'
1	1	1
1	0	0
0	1	0
0	0	0

