Simplification Method

Digital Logic and Design

Arfan Shahzad

{ arfanskp@gmail.com }

Course Outline

Digital Logic Design

Course Contents:

Number Systems, Logic Gates, Boolean Algebra, Combination logic circuits and designs, Simplification Methods (K-Map, Quinn Mc-Cluskey method), Flip Flops and Latches, Asynchronous and Synchronous circuits, Counters, Shift Registers, Counters, Triggered devices & its types. Binary Arithmetic and Arithmetic Circuits, Memory Elements, State Machines. Introduction Programmable Logic Devices (CPLD, FPGA); Lab Assignments using tools such as Verilog HDL/VHDL, MultiSim

Reference Material:

- 1. Digital Fundamentals by Floyd, 11/e.
- 2. Fundamental of Digital Logic with Verilog Design, Stephen Brown, 2/e.

Karnaugh Map

- Karnaugh Map: A graphical technique for simplifying an expression into a minimal sum of products (MSP) form:
- 1. There are a minimal number of *product terms* in the expression
- 2. Each term has a *minimal number of literals*
- K-map provides a systematic method which is used for simplifying 2,
 - 3, 4 and 5 variable expressions

Karnaugh Map cont... Simplification with postulates

- Simplification of Boolean Expressions by using laws and postulates has some limitations:
- 1. Doesn't guarantee simplest form of expression
- 2. Terms are not obvious
- 3. Special skills of applying rules, laws and postulates are required

Karnaugh Map cont... K Map Reduction Mechanism

- There are three steps to reduce a function by using K Map:
- 1. Mapping of function
- 2. Grouping
- 3. Reduction

			Minterms		
x	y	z	Term	Designation	
0	0	0	x'y'z'	m_0	
0	0	1	x'y'z	m_1	
0	1	0	x'yz'	m_2	
0	1	1	x'yz	m_3	
1	0	0	xy'z'	m_4	
1	0	1	xy'z	m_5	
1	1	0	xyz'	m_6	
1	1	1	xyz	m_7	

Karnaugh Map cont... K-map with 3 variables

- Used for simplifying 3-variable expressions
- K-map has 8 cells
- K-map can be represented in row format or column format

A\BC	00	01	11	10
0	0	1	3	2
1	4	5	7	6

AB\C	0	1
00	0	1
01	2	3
11	6	7
10	4	5

Karnaugh Map cont... K-map with 4 variables

- Used for simplifying 4-variable expressions
- K-map has 16 cells
- A 4-variable K-map has a square format

			Militerilis		
X	y	Z	Term	Designation	
0	0	0	x'y'z'	m_0	
0	0	1	x'y'z	m_1	
0	1	0	x'yz'	m_2	
0	1	1	x'yz	m_3	
1	0	0	xy'z'	m_4	
1	0	1	xy'z	m_5	
1	1	0	xyz'	m_6	
1	1	1	xyz	m_7	

Minterms

AB\CD	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

- Selecting n-variable K-map
- 1. Marked with 1in cell for each minterm
- 2. Remaining cells marked with 0

- SOP expression: $AB\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C}$
- The cells representing the three minterms are marked with 1s,

remaining cells are marked with 0s.

Any of the two K-maps can be used

A\BC	00	01	11	10
0	0	0	0	1
1	1	0	0	1

AB\C	0	1
00	0	0
01	1	0
11	1	0
10	1	0

• SOP expression:

$$\overline{A}.\overline{B}.\overline{C}.D + \overline{A}.B.\overline{C}.\overline{D} + \overline{A}.B.\overline{C}.D + \overline{A}.B.\overline{C}.\overline{D} + A.\overline{B}.\overline{C}.\overline{D} + A.B.\overline{C}.D + A.B.\overline{C}.D$$

AB\CD	00	01	11	10
00	0	1	0	0
01	1	1	0	1
11	0	1	0	1
10	1	0	0	0

- Selecting n-variable K-map
- 1. Marked with 1 in all the cells where the non- standard product term is present
- 2. Remaining cells marked with 0

- SOP expression: $A + B\overline{C}$
- Complete the terms carefully by considering number of variables.
- ABC+AB'C+ABC'+AB'C' (Complete terms for "A")
- ABC'+A'BC' (Complete terms for "BC'")
- If 1 variable is missing then two new terms will be formulated.
- If 2 then 4. If 3 then 8 and so on.... [formula 2ⁿ]

• SOP expression: A + BC

A\BC	00	01	11	10
0				
1				

00	01	11	10	

∧ BC⊥	۸ ۵٬ ۲	A RC	+AB'C'
ABC+	ADC	ABC	+Ab C

A\BC	00	01	11	10
0	0	0	0	1
1	1	1	1	1

AB\C	0	1
00	0	0
01	1	0
11	1	1
10	1	1

• SOP expression: $D + A\overline{C} + BC$

AB\CD	00	01	11	10
00				
01				
11				
10				

• SOP expression: $D + A\overline{C} + BC$

AB\CD	00	01	11	10
00	0	1	1	0
01	0	1	1	1
11	1	1	1	1
10	1	1	1	0

Karnaugh Map cont... Grouping

- To make groups, we have to follow these rules:
- 1. K-map is considered to be wrapped around

2.	All sides	are ad	jacent to	each	other
----	-----------	--------	-----------	------	-------

- 3. Groups of 2, 4, 8,16 and 32 adjacent cells are formed
- 4. Groups can be row, column, square or rectangular.
- 5. Groups of diagonal cells are not allowed

- Mapping of expression
 Forming of Groups of 1s
- Each group represents product term
- 3-variable K-map:
- 1 cell group yields a 3 variable product term
- 2 cell group yields a 2 variable product term
- 4 cell group yields a 1 variable product term
- 8 cell group yields a value of 1 for function

- 4-variable K-map:
- 1 cell group yields a 4 variable product term
- 2 cell group yields a 3 variable product term
- 4 cell group yields a 2 variable product term
- 8 cell group yields a 1 variable product term
- 16 cell group yields a *value of 1 for function*

$$B.\overline{C} + A.C + \overline{B}.C$$

AB\C	0	1
00	0	1)
01		0
11	1	1
10	0	1

A\BC	00	01	11	10
0	0	1	1	1
1	1	0	0	0

$$A.\overline{B}.\overline{C} + \overline{A}.C + \overline{A}.B$$

$$B + A.C$$

AB\C	0	1
00	0	0
01	1	1
11	1	1
10	0	1

A\BC	00	01	11	10
0	0	0 (1	1
1 (1	1	1	0

$$A.\overline{B} + B.C + \overline{A}.B$$

$$A.\overline{C}.\overline{D} + C.D + B.C$$

AB\CD	00	01	11	10
00	0	0	1	0
01	0	0	1	1
11	1	0	1	1
10	1	0	1	0

$$A.\overline{C} + \overline{B}.D + B.C$$

AB\CD	00	01	11	10	
00	0	1	1	0	
01	0	0	1	_	
11	1	1	1	1	
10	1	1	1	0	

$$\overline{B}.\overline{D} + \overline{B}.C + A.B.D + \overline{A}.C.\overline{D}$$

AB\CD	00	01	11	10
00	1	0	1	1
01	0	0	0	1
11	0	1	1	0
10	1	0	1	1

