Simplification Method

Arfan Shahzad
\{ arfanskp@gmail.com \}

Course Outline

Digital Logic Design

Course Contents:

Number Systems, Logic Gates, Boolean Algebra, Combination logic circuits and designs, Simplification Methods (K-Map, Quinn Mc-Cluskey method), Flip Flops and Latches, Asynchronous and Synchronous circuits, Counters, Shift Registers, Counters, Triggered devices \& its types. Binary Arithmetic and Arithmetic Circuits, Memory Elements, State Machines. Introduction Programmable Logic Devices (CPLD, FPGA); Lab Assignments using tools such as Verilog HDL/VHDL, MultiSim
Reference Material:

1. Digital Fundamentals by Floyd, 11/e.
2. Fundamental of Digital Logic with Verilog Design, Stephen Brown, 2/e.

Karnaugh Map

- Karnaugh Map: A graphical technique for simplifying an expression into a minimal sum of products (MSP) form:

1. There are a minimal number of product terms in the expression
2. Each term has a minimal number of literals

- K-map provides a systematic method which is used for simplifying 2, 3, 4 and 5 variable expressions

Karnaugh Map cont... Simplification with postulates

- Simplification of Boolean Expressions by using laws and postulates has some limitations:

1. Doesn't guarantee simplest form of expression
2. Terms are not obvious
3. Special skills of applying rules, laws and postulates are required

Karnaugh Map cont... K Map Reduction Mechanism

- There are three steps to reduce a function by using K Map:

1. Mapping of function
2. Grouping
3. Reduction

Karnaugh Map cont... K-map with 3 variables

- Used for simplifying 3-variable expressions
- K-map has 8 cells
- K-map can be represented in row format or column format

$A \backslash B C$	00	01	11	10
0	0	1	3	2
1	4	5	7	6

ABIC	0	1
00	0	1
01	2	3
11	6	7
10	4	5

Karnaugh Map cont... K-map with 4 variables

- Used for simplifying 4-variable expressions

			Minterms	
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	Term	Designation
0	0	0	$x^{\prime} y^{\prime} z^{\prime}$	m_{0}
0	0	1	$x^{\prime} y^{\prime} z$	m_{1}
0	1	0	$x^{\prime} y z^{\prime}$	m_{2}
0	1	1	$x^{\prime} y z$	m_{3}
1	0	0	$x y^{\prime} z^{\prime}$	m_{4}
1	0	1	$x y^{\prime} z$	m_{5}
1	1	0	$x y z^{\prime}$	m_{6}
1	1	1	$x y z$	m_{7}

- K-map has 16 cells
- A 4-variable K-map has a square format

ABICD	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

Karnaugh Map cont... Mapping of Standard SOP expression

- Selecting n-variable K-map

1. Marked with 1 in cell for each minterm
2. Remaining cells marked with 0

Karnaugh Map cont... Mapping of Standard SOP expression

- SOP expression: $A B \bar{C}+A \bar{B} \bar{C}+\bar{A} B \bar{C}$
- The cells representing the three minterms are marked with 1 s, remaining cells are marked with 0 s .
- Any of the two K-maps can be used

A\BC	00	01	11	10
0	0	0	0	1
1	1	0	0	1

$A B \backslash C$	0	1
00	0	0
01	1	0
11	1	0
10	1	0

Karnaugh Map cont... Mapping of Standard SOP expression

- SOP expression:

$$
\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{C}} \cdot \mathrm{D}+\overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \overline{\mathrm{C}} \cdot \overline{\mathrm{D}}+\overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \overline{\mathrm{C}} \cdot \mathrm{D}+\overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \overline{\mathrm{D}}+\mathrm{A} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{C}} \cdot \overline{\mathrm{D}}+\mathrm{A} \cdot \mathrm{~B} \cdot \overline{\mathrm{C}} \cdot \mathrm{D}+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \overline{\mathrm{D}}
$$

AB\CD	00	01	11	10
00	0	1	0	0
01	1	1	0	1
11	0	1	0	1
10	1	0	0	0

Karnaugh Map cont... Mapping of Non-Standard SOP expression

- Selecting n-variable K-map

1. Marked with 1 in all the cells where the non- standard product term is present
2. Remaining cells marked with 0

Karnaugh Map cont... Mapping of Non-Standard SOP expression

- SOP expression: $\mathrm{A}+\mathrm{BC}$
- Complete the terms carefully by considering number of variables.
- $A B C+A B^{\prime} C+A B C^{\prime}+A B^{\prime} C^{\prime}$ (Complete terms for " A ")
- $A B C^{\prime}+A^{\prime} B C^{\prime} \quad$ (Complete terms for " $B C^{\prime}$ ")
- If 1 variable is missing then two new terms will be formulated.
- If 2 then 4 . If 3 then 8 and so on.... [formula $2^{\text {n }}$]

Karnaugh Map cont... Mapping of Non-Standard SOP expression

- SOP expression: A + BC

AIBC	00	01	11	10
0				
1				

$A B C+A B^{\prime} C+A B C^{\prime}+A B^{\prime} C^{\prime}$
$A B C^{\prime}+A^{\prime} B C^{\prime}$

$A \backslash B C$	00	01	11	10
0	0	0	0	1
1	1	1	1	1

$A B \backslash C$	0	1
00	0	0
01	1	0
11	1	1
10	1	1

Karnaugh Map cont... Mapping of Non-Standard SOP expression

- SOP expression: $D+A \bar{C}+B C$

$A B \backslash C D$	00	01	11	10
00				
01				
11				
10				

Karnaugh Map cont... Mapping of Non-Standard SOP expression

- SOP expression: $D+A \bar{C}+B C$

$A B \backslash C D$	00	01	11	10
00	0	1	1	0
01	0	1	1	1
11	1	1	1	1
10	1	1	1	0

Karnaugh Map cont... Grouping

- To make groups, we have to follow these rules:

1. K-map is considered to be wrapped around

AB\CD	00	01	11	10
00				
01				
11				
10				

2. All sides are adjacent to each other
3. Groups of $2,4,8,16$ and 32 adjacent cells are formed
4. Groups can be row, column, square or rectangular.
5. Groups of diagonal cells are not allowed

Karnaugh Map cont... Simplification of SOP expressions using K-map

- Mapping of expression \rightarrow Forming of Groups of 1s
- Each group represents product term
- 3-variable K-map:
- 1 cell group yields a 3 variable product term
- 2 cell group yields a 2 variable product term
- 4 cell group yields a 1 variable product term
- 8 cell group yields a value of 1 for function

Karnaugh Map cont... Simplification of SOP expressions using K-map

- 4-variable K-map:
- 1 cell group yields a 4 variable product term
- 2 cell group yields a 3 variable product term
- 4 cell group yields a 2 variable product term
- 8 cell group yields a 1 variable product term
- 16 cell group yields a value of 1 for function

ArfanShahzadTech

Karnaugh Map cont... Simplification of SOP expressions using K-map

$$
\text { B. } \overline{\mathrm{C}}+\mathrm{A} . \mathrm{C}+\overline{\mathrm{B}} . \mathrm{C}
$$

ABIC	0	1
00	0	1
01	1	0
11	1	1
10	0	1

AIBC	00	01	11	10
0	0	1	1	1
1	1	0	0	0

$\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{C}}+\overline{\mathrm{A}} \cdot \mathrm{C}+\overline{\mathrm{A}} \cdot \mathrm{B}$

Karnaugh Map cont...
 Simplification of SOP expressions using K-map

$$
B+A \cdot C
$$

AB\C	0	1
00	0	0
01	1	1
11	1	1
10	0	1

AIBC	00	01	11	10
0	0	0	1	1
1	1	1	1	0

$A \cdot \bar{B}+B \cdot C+\bar{A} \cdot B$

Karnaugh Map cont...
 Simplification of SOP expressions using K-map

A. $\bar{C} . \bar{D}+C . D+B . C$

$A B \backslash C D$	00	01	11	10
00	0	0	1	0
01	0	0	1	1
11	1	0	1	1
10	1	0	1	0

Karnaugh Map cont... Simplification of SOP expressions using K-map

$$
\mathrm{A} \cdot \overline{\mathrm{C}}+\overline{\mathrm{B}} \cdot \mathrm{D}+\mathrm{B} \cdot \mathrm{C}
$$

$A B \backslash C D$	00	01	11	10
00	0	1	1	0
01	0	0	1	1
11	1	1	1	1
10	1	1	1	0

Karnaugh Map cont...
 Simplification of SOP expressions using K-map

$$
\overline{\mathrm{B}} . \overline{\mathrm{D}}+\overline{\mathrm{B}} \cdot \mathrm{C}+\mathrm{A} . \mathrm{B} \cdot \mathrm{D}+\overline{\mathrm{A}} . \mathrm{C} . \overline{\mathrm{D}}
$$

AB $\backslash C D$	00	01	11	10
00	1	0	1	1
01	0	0	0	1
11	0	1	1	0
10	1	0	1	1

